1. 什么是核磁共振
核磁共振
是80年代初应用于临床,以后发展迅速。核磁共振成像目前已成为
医学影像
诊断中的一个新的分支。
核磁共振成像原理
的
原子核
带有
正电
,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化
矢量
由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起
共振效应
。在
射频脉冲
停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射
电信号
,把这许多信号检出,并使
之时
进行空间分辨,就得到运动中原子核分布
图像
。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫
弛豫时间
。弛豫时间有两种即T1和T2,T1为自旋一
点阵
或纵向驰豫时间T2,T2为自旋一自旋或横向弛豫时间。
磁共振
最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)
血液
和脑脊液的流动;(d)
顺磁性物质
(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、
骨髓
呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、
气体
、
含气
肺呈黑色。核磁共振的另一特点是
流动液体
不产生信号称为流动效应或流动
空白效应
。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易
软组织
分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的
硬膜
为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于
全身
各系统的成像诊断。效果最佳的是
颅脑
,及其脊髓、
心脏
大血管
、
关节
骨骼
、软组织及盆腔等。对
心血管疾病
不但可以观察各腔室、大血管及
瓣膜
的解剖变化,而且可作
心室
分析,进行定性及
半定量
的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、
核素
及CT检查。在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。
磁共振成像
自80年代初临床应用以来,发展迅速,渐趋成熟,它具有非
射线
成像、无创、无害。在心血管和脑脊髓成像时无需注入对比剂,安全、无痛苦,同时可作功能分析等优点。但它的缺点是昂贵、费时,尚难满足广泛应用。不适于某些急危
病人
。由于有磁场的影响,对装有
心脏起搏器
的病人不能应用,以免引起
起搏器
失灵,造成生命危险
2. 什么是核磁共振
磁共振
magnetic
resonance(MRI);
固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率一致时,就会从交变电磁场中吸收能量以维持其进动,固体对入射的高频电磁场能量在上述频率处产生一个共振吸收峰。若产生磁共振的磁矩是顺磁体中的原子(或离子)磁矩,则称为顺磁共振;若磁矩是原子核的自旋磁矩,则称为核磁共振。若磁矩为铁磁体中的电子自旋磁矩,则称为铁磁共振。核磁矩比电子磁矩约小3个数量级,故核磁共振的频率和灵敏度比顺磁共振低得多;同理,弱磁物质的磁共振灵敏度又比强磁物质低。从量子力学观点看,在外磁场作用下电子和原子核的磁矩是空间量子化的,相应地具有离散能级。当外加高频电磁场的能量子hv等于能级间距时,电子或原子核就从高频电磁场吸收能量,使之从低能级跃迁到高能级,从而在共振频率处形成吸收峰。
利用顺磁共振可研究分子结构及晶体中缺陷的电子结构等。核磁共振谱不仅与物质的化学元素有关,而且还受原子周围的化学环境的影响,故核磁共振已成为研究固体结构、化学键和相变过程的重要手段。核磁共振成像技术与超声和X射线成像技术一样已普遍应用于医疗检查。铁磁共振是研究铁磁体中的动态过程和测量磁性参量的重要方法。