A. 基因组高通量测序的原理
测序方案建立在双脱氧测序法(Sanger等,1977)的基础上。为了从每一克隆插入片段两端成对地进行测序,每一个质粒模板DNA板应配备两个384孔循环测序反应板。
测序反应采用Big Dye Terminator chemistry version 3.1(AppliedBiosystems)和标准M13或常用正向引物和反向引物。测序反应通过BiomekFX(Beckman)移液操作工作站建立。
机械臂负责等分模板试样,起与反应液混合的作用,反应液含有双脱氧核苷酸、荧光标记的核苷酸、TaqDNA聚合酶、序列引物和缓冲液。
模板和反应板有条形码,且在BiomekFX移液操作工作站上有条形码读取器跟踪,确保模板和反应液转移中没有错误。30~40线性扩增步骤连续循环在MJResearchTetrads或9700热循环仪(Ap—pliedBiosystems)中进行。
(1)高通量测序技术扩展阅读:
技术发展:
高通量测序平台(high-throughput_genome_sequence_database)自从2005年454 Life Sciences公司(2007年该公司被Roche正式收购)推出了454 FLX焦磷酸测序平台(454 FLX pyrosequencing platform)以来。
曾推出过3730xlDNA测序仪(3730xl DNA Analyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了。
因为他们的拳头产品毛细管阵列电泳测序仪系列(series capillary array electrophoresis sequencing machines)遇到了两个强有力的竞争对手,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer)。
另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(Genome Analyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表。
B. 怎样看待生物芯片与高通量测序的区别,以及前景
转录组测序和表达谱测序其实都是通过高通量测序技术进行的,是一个框架。表达谱主要研究的是基因表达量的变化,侧重于获得你材料的全部转录组信息。新一代高通量测序技术可以全面快速地获得特定细胞或组织在某一个状态下几乎所有转录本的序列信息和表达信息、基因结构变异,相当于DNA水平的基因组测序、筛选分子标记(SNPs或SSR)等生命科学的重要问题,但仅可用于基因表达差异的研究转录组学的研究对象包括mRNA和非编码RNA等,可以用来研究基因的表达差异情况,测序通量更小。
基因表达谱测序是直接对某一物种或特定细胞在某一功能状态下产生的mRNA进行高通量测序。该技术结合了转录组测序建库的实验方法,基因表达谱测序要求的读长更短,与转录组测序相比,从而准确地分析基因表达差异,转录组测序主要是针对没有参考基因组(即基因组未完成测序)的物种。先要有转录组或是基因组才可以做表达谱,否则没有Ref做参考,上调或下降。
C. 什么是高通量测序
高通量测序技术(High-throughput sequencing)又称“下一代”测序技术("Next-generation" sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。
根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(Massively Parallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina (Solexa) sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconctor sequencing)、DNA 纳米球测序 (DNA nanoball sequencing)等。
高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。
自从2005年454 Life Sciences公司(2007年该公司被Roche正式收购)推出了454 FLX焦磷酸测序平台(454 FLX pyrosequencing platform)以来,因为他们的拳头产品毛细管阵列电泳测序仪系列(series capillary array electrophoresis sequencing machines)遇到了两个强有力的竞争对手,曾推出过3730xl DNA测序仪(3730xl DNA Analyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer),,另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(Genome Analyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表
D. 高通量测序技术 中的“高通量” 是什么意思
高通量是相对于第一代测序的,第一代测序只能一次测1个样品的1段序列,产生的数据量相对来说很小,而高通量测序一次能够产生的数据量在几十G上百G,可以一次测很多的样本。
在2000年的时候,3700、MegaBace等仪器上的测序也是高通量测序,是相对手工测序或者跑平板胶来说的。
不过到2005年以后,高通量测序就改指第二代测序(Next generation sequencing),454、Solexa(后改为Illumina)和SOLiD等第二代测序,比3730等第一代测序的通量提高了成千上万倍,甚至上亿倍,所以称为高通量测序。
(4)高通量测序技术扩展阅读
原理:
测序方案建立在双脱氧测序法(Sanger等,1977)的基础上。为了从每一克隆插入片段两端成对地进行测序,每一个质粒模板DNA板应配备两个384孔循环测序反应板。测序反应采用Big Dye Terminator chemistry version 3.1(AppliedBiosystems)和标准M13或常用正向引物和反向引物。测序反应通过BiomekFX(Beckman)移液操作工作站建立。
机械臂负责等分模板试样,起与反应液混合的作用,反应液含有双脱氧核苷酸、荧光标记的核苷酸、TaqDNA聚合酶、序列引物和缓冲液。模板和反应板有条形码,且在BiomekFX移液操作工作站上有条形码读取器跟踪,确保模板和反应液转移中没有错误。30~40线性扩增步骤连续循环在MJResearchTetrads或9700热循环仪(Ap—pliedBiosystems)中进行。
E. 高通量测序技术ngs用什么仪器
“普通的基因测序”应该是指“常规DNA测序”吧,是用Sanger法(也就是双脱氧法)进行测序的方法,目前非常普遍的是直接用ABI 3730xl 进行的自动测序,基本上可以做到600bp-800bp的读长。
高通量测序的概念其实是一个相对的概念,在2000年的时候,3700、MegaBace等仪器上的测序也是高通量测序,是相对手工测序或者跑平板胶来说的。
不过到2005年以后,高通量测序就改指第二代测序(Next generation sequencing),454、Solexa(后改为Illumina)和SOLiD等第二代测序,比3730等第一代测序的通量提高了成千上万倍,甚至上亿倍,所以称为高通量测序。
NGS的特点主要有:
1、通量高。一个RUN能产生500Mb-600Gb的数据量。
2、读长相对较短。454(约400-500bp),llumina(100-250bp),SOLiD(75-100)。
3、单位数据的成本非常低。现在很多项目测序的费用。已经非常低。生物信息分析成本变得更为重要了。
F. 谈谈基因测序技术经历了哪几个发展阶段,这些技术的特点分别是什么
基因测序也称DNA测序,是现代生物学研究中重要的手段之一。基因测序技术经过了三个发展阶段。第一代DNA测序技术是1975年由桑格(Sanger)和考尔森(Coulson)提出的链终止法。第一代技术准确率高,读取长,是至今唯一可以进行“从头至尾”测序的方法,但存在成本高、速度慢等方面的不足,并不是最理想的测序方法。使用第一代Sanger测序技术完成的人类基因组计划,花费了30亿美元巨资,用了十三年的时间。
随后的二、三代测序技术以高通量为共同特征,也被称为“新一代测序技术(NGS)”。Roche公司的454测序平台、Illumina公司的Solexa测序系统以及ABI公司的SOLID测序系统标志着第二代测序技术诞生。尽管各系统在高通量水平、测序准确度、存储格式、技术方法上各有差异,但共同特征是大大降低了测序成本并极大地提高了测序速度,完成一个人的基因组测序只需一周左右时间。然而第二代测序技术在测序前要通过PCR段对待测片段进行扩增,增加了测序的错误率。而且二代测序产生的测序结果长度较短,需要对测序结果进行人工拼接,因此比较适合于对已知序列的基因组进行重新测序,而在对全新的基因组进行测序时还需要结合第一代测序技术。
近期出现的Helicos公司的Heliscope单分子测序仪、Pacific Biosciences公司的SMRT技术、Oxford Nanopore Technologies公司正在研究的纳米孔单分子技术,被认为是第三代测序技术。与前两代技术相比,其最大的特点是单分子测序。第三代测序技术解决了错误率的问题,通过增加荧光的信号强度及提高仪器的灵敏度等方法,使测序不再需要PCR扩增这个环节,实现了单分子测序并继承了高通量测序的优点。更多基因相关资讯可登陆盛景基因查看。
G. 基因组高通量测序的技术发展
高通量测序平台(high-throughput_genome_sequence_database)自从2005年454 Life Sciences公司(2007年该公司被Roche正式收购)推出了454 FLX焦磷酸测序平台(454 FLX pyrosequencing platform)以来,曾推出过3730xlDNA测序仪(3730xl DNA Analyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,因为他们的拳头产品毛细管阵列电泳测序仪系列(series capillary array electrophoresis sequencing machines)遇到了两个强有力的竞争对手,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer),,另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(Genome Analyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表。
在最近几年中,高通量测序技术已经由以凝胶板为基础的方法(例如“S放射标记测序手册、ABl 373、ABIPRISM 377、Li-corIR2型DNA测序仪)发展到毛细管测序仪(如ABI Prism 3100、3700和3730xl型DNA测序仪,Megabace1000和Megabace 5000)测序,已有关于制备DNA和测序的方法及设备的评论发表(Meldrum,2000a,b)。利用毛细管测序仪的转变解决了凝胶板技术内在的通路追踪问题,毛细管测序仪的自动化显著提高了处理量,同时提供了更长的可测序长度。这些进展显著增加了近些年产生的人类病原体的基因组数据。
TIGR现在的尖端测序设备包括25台ABIPrism 3700DNA分析仪、24台AppliedBiosystems 3730xlDNA分析仪、6台ABIPrism 3100DNA分析仪。约有50个项目在同时进行。在2001年进行的测序反应超过了3 400 000个,而到2002年底已完成了6 000 000个反应。TIGR现今的测序能力为每年14 000 000个测序流程。