当前位置:首页 » 入门技巧 » log公式运算法则

log公式运算法则

发布时间: 2021-08-06 11:21:48

A. log 在数学中的运算公式

1、如果a>0,且a≠1,M>0,N>0.那么:

(1)loga(M·N)=logaM+logaN;

(2)logaNM=logaM-logaN;

(3)logaMn=nlogaM(n∈R).

(4)(n∈R).

2、换底公式

logab=logcalogcb(a>0,且a≠1;c>0,且c≠1;b>0)

(1)log公式运算法则扩展阅读

对数函数的运算性质的难点:

一、底数不统一

对数的运算性质是建立在底数相同的基础上的,但实际问题中,却经常要遇到底数不相同的情况,碰到这种情形,主要有三种处理的方法:

1、化为指数式

对数函数与指数函数互为反函数,它们之间有着密切的关系:logaN=bab=N,因此在处理有关对数问题时,经常将对数式化为指数式来帮助解决。

2、利用换底公式统一底数

换底公式可以将底数不同的对数通过换底把底数统一起来,然后再利用同底对数相关的性质求解。

3、利用函数图象

函数图象可以将函数的有关性质直观地显现出来,当对数的底数不相同时,可以借助对数函数的图象直观性来理解和寻求解题的思路。

B. log函数加减运算

当a>0且a≠1时,m>0,n>0,那么:

log(a)(mn)=log(a)(m)+log(a)(n)

log(a)(m/n)=log(a)(m)-log(a)(n)

log(a)(m^n)=nlog(a)(m) (n∈r)

换底公式:log(a)m=log(b)m/log(b)a (b>0且b≠1)

a^(log(b)n)=n^(log(b)a)

在比较两个函数值时:

如果底数一样,真数越大,函数值越大。(a>1时)

如果底数一样,真数越大,函数值越小。(0<a<1时)



(2)log公式运算法则扩展阅读:

对数函数的一般形式为y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。

因此指数函数里对于a的规定(a>0且a≠1),因此对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。

对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

C. 关于log的公式

当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a) 证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N; log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M , log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1

D. log的 运算法则

解答:
log怎样运算?
这个都需要借助工具:电脑或者数学用表。
但是,电脑和数学用表都只能求出常用对数lgn
和自然对数lnn
需要利用换底公式转化
比如log底数3真数10=log底数10真数10/log底数10真数3=1/lg3≈1/0.4771≈2.0959

E. 对数公式的运算法则

运算法则公式如下:

1.lnx+ lny=lnxy

2.lnx-lny=ln(x/y)

3.lnxⁿ=nlnx

4.ln(ⁿ√x)=lnx/n

5.lne=1

6.ln1=0

拓展内容:

对数运算法则(rule of logarithmic operations)一种特殊的运算方法.指积、商、幂、方根的对数的运算法则。

在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。

更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

由指数和对数的互相转化关系可得出:

1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即

F. log的 运算法则 乘除

一、四则运算法则:
loga(AB)=loga A+loga B
loga(A/B)=loga A-loga B
logaN^x=xloga N
二、换底公式
logM N=loga M/loga N
三、换底公式导出:
logM N=-logN M
四、对数恒等式
a^(loga M)=M

G. log的相乘怎么算

log的乘法一般都用换底公式来解决:

log(a)b=log(s)b/log(s)a(括号里的是底数)。

例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。

log(a)b=log(s)b/log(s)a(括号里的是底数)的推导过程:

设log(s)b=M,log(s)a =N,log(a)b=R

则s^M=b,s^N=a,a^R=b

即(s^N)^R=a^R=b

s^(NR)=b

所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。

(7)log公式运算法则扩展阅读:

对数的加减乘除运算规则:

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N)

4、log(a)(M÷N)=log(a)(M)-log(a)(N)

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

H. log函数运算公式是什么

如果a>0,且a≠1,M>0,N>0,那么:

1、loga(MN)=logaM+logaN;

2、loga(M/N)=logaM-logaN;

3、对logaM中M的n次方有=nlogaM;

如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。

(8)log公式运算法则扩展阅读:

基本性质

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N)

4、log(a)(M÷N)=log(a)(M)-log(a)(N)

5、log(a)(M^n)=nlog(a)(M)

I. 求log函数运算公式大全

logₐ(MN)=logₐM+logₐN

logₐ(M/N)=logₐM-logₐN

logₐ(1/N)=-logₐN

logₐ(ₐᵏ)=k

logₐMⁿ=nlogₐM

(9)log公式运算法则扩展阅读:

如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。

在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

J. log怎么计算

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。

计算方式:

根据2^3=8,可得log2 8=3。

(10)log公式运算法则扩展阅读:

推导公式

log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)

loga(b)*logb(a)=1

loge(x)=ln(x)

lg(x)=log10(x)

求导数

(xlogax)'=logax+1/lna

其中,logax中的a为底数,x为真数;

(logax)'=1/xlna

特殊的即a=e时有

(logex)'=(lnx)'=1/x[4]