『壹』 用SPSS相关性分析后的结果怎么看
1、首先将数据导入到SPSS工具中,并打开相关的数据,保证导入的数据类型为Excel类型。
『贰』 SPSS相关系数分析的问题
其实,0.658已经不小了。是否多重共线,最好的用SPSS进行专门检验。
『叁』 统计相关分析中相关系数及p值的意义
相关系数0.241远远小于
p=0.905,我们可以认为线性相关关系不显著,或者说没有相关关系,没有统计学意义。
p>0.05的r值是指线性相关关系显著,近似认为有关系。
当相关系数大于0.905时,是指线性相关关系特别显著,套用公式就可以得到极度接近的数值,这也是相关分析的实际应用。
『肆』 回归分析中相关指数和相关系数有什么联系与区别
在线性回归有,有上述关系.即:R^2=r^2
在其实回归模型中不一定适用。
R^2表达的是解释变量对总偏差平方和的贡献度,强调的是“几个模型”之间的拟合度的好与坏。
r表示解释变量与预报变量之间线性相关性的强弱程度,用来判断是否具有线性相关性。
回归系数b乘以X和Y变量的标准差之比结果为相关系数r。即b*σx/σy=r
相关系数和回归系数的联系和区别如下:
首先,相关系数与回归系数的方向,即符号相同。回归系数与相关系数的正负号都有两变量离均差积之和的符号业决定,所以同一资料的b与其r的符号相同。回归系数有单位,形式为(应变量单位/自变量单位)相关系数没有单位。相关系数的范围在-1~+1之间,而回归系数没有这种限制。
回归系数是指在回归方程中表示自变量x
对因变量y
影响大小的参数。回归系数越大表示x
对y
影响越大,正回归系数表示y
随x
增大而增大,负回归系数表示y
随x增大而减小。回归方程式^Y=bX+a中之斜率b,称为回归系数,表X每变动一单位,平均而言,Y将变动b单位。
『伍』 什么叫做相关分析相关系数、决定系数各有什么具体意义如何计算如何对相关系数作假设检验
决定系数(coefficient of determination),有的教材上翻译为判定系数,也称为拟合优度。 计量中的判定系数 拟合优度(或称判定系数,决定系数)
目的:
企图构造一个不含单位,可以相互进行比较,而且能直观判断拟合优劣的指标.拟合优度的
定义:
意义:拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高.观察点在回归直线附近越密集.
取值范围:
0-1判定系数只是说明列入模型的所有解释变量对应变量的联合的影响程度,不说明模型中单个解释变量的影响程度.对时间序列数据,判定系数达到0.9以上是很平常的;但是,对截面数据而言,能够有0.5就不错了. 表征依变数Y的变异中有多少百分比,可由控制的自变数X来解释. 相关系数(coefficient of correlation)的平方即为决定系数。
它与相关系数的区别在于除掉|R|=0和1情况, 由于R2<R,可以防止对相关系数所表示的相关做夸张的解释。
决定系数:在Y的总平方和中,由X引起的平方和所占的比例,记为R2(R的平方) 决定系数的大小决定了相关的密切程度。 当R2越接近1时,表示相关的方程式参考价值越高;相反,越接近0时,表示参考价值越低。这是在一元回归分析中的情况。但从本质上说决定系数和回归系数没有关系,就像标准差和标准误差在本质上没有关系一样。 在多元回归分析中,决定系数是通径系数的平方。
表达式:R^2=SSR/SST=1-SSE/SST 其中:SST=SSR+SSE,SST (sum of squares for total)为总平方和,SSReg (sum of squares for regression为回归平方和,SSE (sum of squares for error) 为残差平方和。 注:(不同书命名不同) 回归平方和:SSR(Sum of Squares for regression) = ESS (explained sum of squares) 残差平方和:SSE(Sum of Squares for Error) = RSS (resial sum of squares) 总离差平方和:SST(Sum of Squares for total) = TSS(total sum of squares) SSE+SSR=SST RSS+ESS=TSS 意义:拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。 取值范围:0-1.
『陆』 spss中相关性分析的原理是什么
_问题描述:在SPSS中做主成成分分析的时候有一步是指标之间的相关性判定,我想知道具体是怎么进行判定的,他的算法、原理是什么?答案1:: 说判定有些严格,其实就是观察一下各个指标的相关程度。一般来说相关性越是高,做主成分分析就越是成功。主成分分析是通过降低空间维度来体现所有变量的特征使得样本点分散程度极大,说得直观一点就是寻找多个变量的一个加权平均来反映所有变量的一个整体性特征。评价相关性的方法就是相关系数,由于是多变量的判定,则引出相关系数矩阵。评价主成分分析的关键不在于相关系数的情况,而在于贡献率,也就是根据主成分分析的原理,计算相关系数矩阵的特征值和特征向量。相关系数越是高,计算出来的特征值差距就越大,贡献率等于前n个大的特征值除以全部特征值之和,贡献率越是大说明主成分分析的效果越好。反之,变量之间相关性越差。举个例子来说,在二维平面内,我们的目的就是把它映射(加权)到一条直线上并使得他们分散的最开(方差最大)达到降低维度的目的,如果所有样本点都在一条直线上(也就是相关系数等于1或者- 1),这样的效果是最好的。再假设样本点呈现两条垂直的形状(相关系数等于零),你要找到一条直线来做映射就很难了。一般来说前三个主成分的贡献率在90%以上,第一个主成分的贡献率在 70%效果就已经很好了。答案2:: 你直接看书吧 那原理我要写一天 才能发给你。。。
『柒』 相关性分析的概念及方法
相关分析就是根据一个因素(变量)与另一个因素(变量)的相关系数是否大于临界值,判断两个因素是否相关。在相关的因素之间,根据相关系数大小判断两个因素关系的密切程度,相关系数越大,说明两者关系越密切(何晓群,2002)。这种方法从总体上对问题可以有一个大致认识,但却很难在错综复杂的关系中把握现象的本质,找出哪些是主要因素,哪些是次要因素,有时甚至得出错误结论。为此,提出使用数学上的偏相关分析与逐步回归相结合的办法来解决这类问题。
偏相关性分析基本原理是,若众多因素都对某一因素都存在影响,当分析某一因素的影响大小时,把其他因素都限制在某一水平范围内,单独分析该因素对某一因素所带来的影响,从而消除其他因素带来的干扰。比如分析压实作用(或埋深)对孔隙度和渗透率的影响时,便把岩石成分、粒度、胶结类型等都限制在一定范围来单独讨论压实作用,而数学上的偏相关分析恰恰就是解决这类问题的方法,偏相关系数的大小就代表了这种影响程度。结合多因素边引入、边剔除的逐步回归分析方法,也可消除多个因素(自变量)间的相互干扰和多个因素对因变量的重复影响,保留其中的有用信息,挑选出对因变量影响较显著的因素,剔除了一些次要因素,被挑选出的主要因素的标准回归系数和偏回归平方和的大小反映了各参数对因变量(充满度)的影响大小。因此根据各因素(自变量)与因变量间的偏相关系数大小,结合标准回归系数和偏回归平方和,便可以将各因素对因变量的影响大小进行定量排序。其基本步骤如下:
第一步,找出所有可能对因变量产生影响的因素(或参数),同时对一些非数值型参数进行量化处理;
第二步,计算因变量与各参数间的简单相关系数,根据这些简单相关系数的大小,初步分析它们与因变量间的简单相关关系;
第三步,计算因变量与各参数间的偏相关系数、标准回归系数和偏回归平方和;
第四步,根据偏相关系数的大小,再结合标准回归系数和偏回归平方和,综合分析因变量与各参数间的关系密切程度,其值越大,关系越密切,影响越大,反之亦然。
『捌』 求助:如何分析相关系数
呵呵 纠正下哎,好多东西忘得不成样子不是博学 这是专业课的。。。相关系数绝对值不超过1 负数就是负相关 比如 逃课数和期末成绩 应该是显著负相关 绝对值越接近1 相关越大但不能随意把数据放一起统计相关 这两个事件应该有理论支持的相关才行否则就会出现 蝴蝶翅膀扇动次数 和 大地温度的相关了
『玖』 相关系数多少算具有相关性
相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
相关系数r的绝对值一般在0.8以上,认为A和B有强的相关性。0.3到0.8之间,可以认为有弱的相关性。0.3以下,认为没有相关性。
(9)相关系数分析扩展阅读
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
『拾』 回归分析相关系数的解释
回归系数b的检验 是 t检验 当P<α值 即回归系数显著 拒绝原假设
回归模型检验 是检验模型是否合适 通过F检验 当F检验P<α 则模型显著 即反映的总体回归
通过这两种检验 而且符合经济自然规律后的模型可预测