当前位置:首页 » 信息查询 » pandas股票策略

pandas股票策略

发布时间: 2021-08-12 07:16:35

1. 中国的 Python 量化交易工具链有哪些

万得的Python API,可以用来获取实时数据、历史数据以及下单交易 优点:万得大而全 缺点:下单交易功能不是事件驱动(例如成交回报需要用户去查询,而不是主推)
同花顺iFinD的Python API,类似万得的API 优点:比万得便宜,同花顺的服务态度很好(用户提出新需求后很快就能给出确定的答复或者解决方案)
掘金的量化平台
通联数据的量化平台
QuickFix的Python API(可以用来接国信、方正的FIX接口)
Numpy/Scipy/Matplotlib/Pandas(量化分析)
IPyhon/Spyder(适合做量化分析的IDE环境)
Zipline(策略开发回测)
TuShare财经数据接口 - 可以直接抓取新浪财经、凤凰财经的网站数据,包括行情、基本面、经济数据等等。完全免费,简洁易用,API设计得非常友好,提取的数据格式是Pandas的DataFrame。同时可以获取非高频实时数据(取决于网站更新速度,同事经验大约是15秒),一个极好的非高频股票策略数据解决方案。
恒生电子的量化赢家平台,提供Python接口,链接我点进去后没看到具体的使用教程,希望回头补一下。
米矿ricequant在我提出这个问题时尚只有Java的API,后来也支持了Python,期待2016有新的突破。

2. 如何可以优化提升pandas的read

import pandas as pd
data=pd.read_csv('目录+文件名') #打开csv文件的方式
data=pd.read_excel('目录+文件名') #打开xls或xlsx文件的方式
仿照类似的,pandas还可以打开一些其他文件

3. 用pandas做数据分析

这个软件做数据分析是非常不错的,值得信赖。

4. pandas 如何对上千万数据分组“快速”取第一行和最后一行

鼠标选中a1格,按住左键,向下拖到最后一格,就选中一列。如果继续横向拖,就能选中一个区域。
鼠标选中a1格,按住左键,向左拖到最后一格,就选中了一行,继续向下拖,也可以选中一个区域。
楼上说的是键盘操作法,我说的是鼠标操作法。

5. 怎么学习python量化交易

下面教你八步写个量化交易策略——单股票均线策略

1 确定策略内容与框架

若昨日收盘价高出过去20日平均价今天开盘买入股票
若昨日收盘价低于过去20日平均价今天开盘卖出股票

只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?

想想人是怎么操作的,应该包括这样两个部分

既然是单股票策略,事先决定好交易哪一个股票。

每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。

对应代码也是这两个部分

definitialize(context):
用来写最开始要做什么的地方
defhandle_data(context,data):
用来写每天循环要做什么的地方

2 初始化

我们要写设置要交易的股票的代码,比如 兔宝宝(002043)

definitialize(context):
g.security='002043.XSHE'#存入兔宝宝的股票代码

3 获取收盘价与均价

首先,获取昨日股票的收盘价

#用法:变量=data[股票代码].close
last_price=data[g.security].close#取得最近日收盘价,命名为last_price

然后,获取近二十日股票收盘价的平均价

#用法:变量=data[股票代码].mavg(天数,‘close’)
#获取近二十日股票收盘价的平均价,命名为average_price
average_price=data[g.security].mavg(20,'close')

4 判断是否买卖

数据都获取完,该做买卖判断了

#如果昨日收盘价高出二十日平均价,则买入,否则卖出
iflast_price>average_price:
买入
eliflast_price<average_price:
卖出

问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。

#用法:变量=context.portfolio.cash
cash=context.portfolio.cash#取得当前的现金量,命名为cash

5 买入卖出

#用法:order_value(要买入股票股票的股票代码,要多少钱去买)
order_value(g.security,cash)#用当前所有资金买入股票
#用法:order_target(要买卖股票的股票代码,目标持仓金额)
order_target(g.security,0)#将股票仓位调整到0,即全卖出

6 策略代码写完,进行回测

把买入卖出的代码写好,策略就写完了,如下

definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔宝宝
defhandle_data(context,data):#每日循环
last_price=data[g.security].close#取得最近日收盘价
#取得过去二十天的平均价格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得当前的现金
#如果昨日收盘价高出二十日平均价,则买入,否则卖出。
iflast_price>average_price:
order_value(g.security,cash)#用当前所有资金买入股票
eliflast_price<average_price:
order_target(g.security,0)#将股票仓位调整到0,即全卖出

现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。

7 建立模拟交易,使策略和行情实时连接自动运行

策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。 写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。

8 开启微信通知,接收交易信号

点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。 点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。

6. 怎么用python panda 算股票市场收益率

1.收集数据,开盘价,收盘价,交易量
2.用pandas处理数据,处理缺失值
3.用股票收益率的公式带入
说白了,pandas只是个好用的工具,方法都是一样的,只是效率问题
有多少人工,就有多少智能

7. 有没有基于python pandas的回测框架

关键词:开源、python/pandas、易学方便、可以并行、参数优化、事件驱动、亚ms速度、持续维护、支持股票/期货等
介绍:
在事件驱动的回测框架中,引擎逐个读取Bar或Tick并处理。数据采集模块生成市场数据事件,流经策略模块(Strategy类)产生交易信号,资产组合模块根据策略信号,并结合风险管理来判断是否委托下单,模拟的交易所根据滑点、手续费状况等返回成交结果。
使用XQuant后,大部分时候我们不需要关心底层是如何处理的,只需要在Strategy类中完成从数据到信号的处理即可,这有利于我们快速开发策略。
详细见Github,欢迎star、issue,PR。
【Update】结合其他回答有必要更新一下,供大家参考:
明晰两个问题:
1)事件驱动在大部分时候都是必须的,尽量去模拟真实交易过程中的数据播放过程,避免引入未来函数等,机器学习的feature之类可以预先算好存起来;
2)pandas用来I/O,内部的数据结构还是用python自带的,这样达到0.1ms/条的数据处理还是挺容易的,如果还是嫌速度慢,可以利用多核优势,并行运算。

8. 如何 python,pandas判断一个策略的好坏

启动IPython notebook,加载pylab环境: ipython notebook --pylab=inline Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载9800万条数据也只需要263秒左右,还是相当不错了。 import pandas as pd reader = pd.read_csv('dat

9. pandas如何删除指定行

1、前提:加载numpy,pandas和Series,DataFrame。生成一个Series,并删除索引为‘c’的项,如图所示。

10. numpy+pandas除了效率对比excel还有什么功能上的优势吗

python优势:
1. 处理超大量数据(excel 2010 最多100w行)
2. 需要频繁改动参数的重复性工作
3. 最大的优势:各种包(算法包,数据处理包)
除开以上情况,excel和一些数据可视化工具秒杀python(尤其是可视化及可视化后的交互方面),如果你觉得excel不如python,只能说明你不够了解excel函数和vba编程