⑴ 股票估价中的股利固定增长模型数学推导问题
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。
⑵ 与股票估值有关的一道题
您好,刚才我专门问了长投学堂的小熊老师,他说这道题很简单,需要用到“戈登股利增长模型(Gordon Dividend Growth Model) ”。
公式如下:
V=Dt*(1+g)/(K-g)
下面给你小熊老师的QQ记录:
V——股票的内在价值;
Dt——在未来时期以现金形式表示的每股股利;
g为股息年增长率
小熊之家(1009304882) 21:53:55
k——在一定风险程度下现金流的合适的贴现率。
V——股票的内在价值;
Dt——在未来时期以现金形式表示的每股股利;
g为股息年增长率
小熊之家(1009304882) 21:53:55
k——在一定风险程度下现金流的合适的贴现率。
小熊之家(1009304882) 21:54:59
V就是10元股价
D0就是1元的红利
g就是每年红利再投资,可以带来增长20%
最后k就是我们找的用户要求的回报率
所有的值代入,解一元一次方程
好像是32%,我只是心算的,可能算的不对
-----------------------------OVER--------------------------------------
希望你看明白啦!
另外我问了小熊老师,他说这个模型存在很多问题,对股价的估值是很不准确的,股市瞬息万变,真的难以预料,一定要结合“护城河”理论和各种指标去综合判定,希望你好运啦!
有什么问题,可以和我继续讨论,我们坚持的是价值投资的理念!
⑶ 写出固定股利增长的股票股价模型,并指出该模型说明股票的价值取决于哪些因素
楼主没有明确题目的原因,首先你是投资者想找股票投资组合呢,还是考试中出现这类题目?
总之呢,这是一个很费脑力人力智力的一个题目,如果考试的话,你就多研究一下,选出一个投资组合,然后分析它们的价值在哪里,考试中重要的不是你的股票会不会涨,而是你的思路;
如果是做投资的话,估计没人能回答得了,就算人家说了,你敢买吗?
⑷ 关于股利增长模型的问题
资本资产定价模型和套利模型的区别 1、对风险的解释度不同。在资本资产定价模型中,证券的风险只用某一证券和对于市场组合的β系数来解释。它只能告诉投资者风险的大小,但无法告诉投资者风险来自何处,它只允许存在一个系统风险因子,那就是投资者对市场投资组合的敏感度;而在套利定价模型中,投资的风险由多个因素来共同解释。套利定价模型较之资本资产定价模型不仅能告诉投资者风险的大小,还能告诉他风险来自何处,影响程度多大。 2、两者的基本假设有诸多不同。概括的说,资本资产定价模型的假设条件较多,在满足众多假设条件的情况下,所得出的模型表达式简单明了;套利定价模型的假设条件相对要简单得多,而其得出的数学表达式就比较复杂。 3、市场保持平衡的均衡原理不同。在CAPM模型下,它已基本假定了投资者都为理性投资者,所有人都会选择高收益、低风险的组合,而放弃低收益、高风险的投资项目, 直到被所有投资者放弃的投资项目的预期收益达到或超过市场平均水平为止;而在利定价模型中,它允许投资者为各种类型的人,所以他们选择各自投资项目的观点不尽同, 但是由于部分合理性的投资者会使用无风险套利的机会,卖出高价资产、证券,买入低价资产、证券,而促使市场恢复到均衡状态。 4、CAPM模型的实用性较差。这种缺陷的主要来源是推导这一理论所必须的假设条件。比如,该模型假设投资者对价格具有相同的估计,且投资者都有理性预期假设等都是脱离实际的。总之,CAPM模型把收益的决定因素完全归结于外部原因,它基本上是在均衡分析和理性预期的假设下展开的,这从实用性的角度来看是不能令人信服的。 5、两者的适用范围不同。CAPM模型可适用于各种企业,特别适用于对资本成本数额的精确度要求较低、管理者自主测算风险值能力较弱的企业;而套利定价模型适用于对资本成本数额的精确度要求较高的企业,其理论自身的复杂性又决定了其仅适用于有能力对各自风险因素、风险值进行测量的较大型企业。
⑸ 计算股票价值的公式
内在价值V=股利/(R-G)其中股利是当前股息;R为资本成本=8%,当然还有些书籍显示,R为合理的贴现率;G是股利增长率。本年价值为:2.5/(10%-5%),下一年为2.5*(1+10%)/(10%-5%)=55。大部分的收益都以股利形式支付给股东,股东在从股价上获得很大收益的情况下使用。根据本人理解应该属于高配息率的大笨象公司,而不是成长型公司。因为成长型公司要求公司不断成长,所以多数不配发股息或者极度少的股息,而是把钱再投入公司进行再投资,而不是以股息发送。
本条内容来源于:中国法律出版社《中华人民共和国金融法典:应用版》
⑹ 股利增长模型
假设如果股利以一个固定的比率增长,那么我们就已经把预测无限期未来股利的问题...第一种解释如下:这个数学推导模型中若出现g>=R的情况在现实中基本不会出现...
⑺ 大学题目公司金融股票价值
戈登股利增长模型又称为“股利贴息不变增长模型”、“戈登模型(Gordon Model)”,在大多数理财学和投资学方面的教材中,戈登模型是一个被广泛接受和运用的股票估价模型,该模型通过计算公司预期未来支付给股东的股利现值,来确定股票的内在价值,它相当于未来股利的永续流入。戈登股利增长模型是股息贴现模型的第二种特殊形式,分两种情况:一是不变的增长率;另一个是不变的增长值。
不变增长模型有三个假定条件:
1、股息的支付在时间上是永久性的。
2、股息的增长速度是一个常数。
3、模型中的贴现率大于股息增长率。
应用等比数列的求和公式,上式可以简化为:
⑻ 变速股利增长模型计算股票价值
首先按照CAPM模型计算股票投资者的期望报酬率:
r=rf+beta*(rm-rf)=7%+1.23*(13%-7%)=14.38%
然后计算第一阶段每年的股利
D2007=D2006*(1+12%)=1.12*1.12=1.2544
D2008=D2007*(1+12%)=1.4049
D2009=D2008*(1+12%)=1.5735
D2010=D2009*(1+12%)=1.7623
第三步,计算四年后的股价,根据Gordon模型,
P2010=D2011/(r-g)=D2010*(1+17%)/(r-17%)
最后将第一阶段每年的股利贴现,将四年后的股价贴现并求和就是目前的价值。
⑼ 股利固定增长的股票估价模型
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。
⑽ 如何理解股利贴现模型以及其计算公式
股利贴现模型,简称DDM,是一种最基本的股票内在价值评价模型,股票内在价值可以用股票每年股利收入的现值之和来评价;股利是发行股票的股份公司给予股东的回报,按股东的持股比例进行利润分配,每一股股票所分得的利润就是每股股票的股利。
股利贴现模型为定量分析虚拟资本、资产和公司价值奠定了理论基础,也为证券投资的基本分析提供了强有力的理论根据。
股利贴现模型计算公式分为三种。零增长模型即股利增长率为0,计算公式V=D0/k,V为公司价值,D0为当期股利,K为投资者要求的投资回报率,或资本成本;不变增长模型,即股利按照固定的增长率g增长,计算公式为V=D1/(k-g);二段增长模型、三段增长模型、及多段增长模型。
(10)股利增长模型的基本假设是一只股票的价值扩展阅读:
股利是股东投资股票获得的唯一现金流,因此现金股利是决定股票价值的主要因素,而盈利等其他因素对股票价值的影响,只能通过股利间接地表现出来。现金股利贴现模型适合于分红多且稳定的公司,一般为非周期性行业。
由于该模型使用的是预期现金股利的贴现价值,因此对于分红很少或者股利不稳定的公司、周期性行业均不适用。股利贴现模型在实际应用中存在的问题有许多公司不支付现金股利,股利贴现模型的应用受到限制;股利支付受公司股利政策的人为因素影响较大;相对于公司收益长期明显滞后。