当前位置:首页 » 融资杠杆 » 对一个两只股票的最小方差资产组合

对一个两只股票的最小方差资产组合

发布时间: 2021-08-15 05:56:25

Ⅰ 在金融中,如果两只股票相关系数为1,可以说明什么

理论上相关系数反应了两者之间的相互影响的程度。为1,那是正相关,就是其中一个的变动和另外一个的变动时同向。

Ⅱ 股票的组合收益率,组合方差怎么求

1.股票基金
预期收益率=1/3*(-7%)+1/3*12%+1/3*28%=11%
方差=1/3[(-7%-11%)^2+(12%-11%)^2+(28%-11%)^2]=2.05%
标准差=14.3%(标准差为方差的开根,标准差的平方是方差)
2.债券基金
预期收益率=1/3*(17%)+1/3*7%+1/3*(-3%)=7%
方差=1/3[(17%-7%)^2+(7%-7%)^2+(-3%-7%)^2]=0.67%
标准差=8.2%
注意到,股票基金的预期收益率和风险均高于债券基金.然后我们来看股票基金和债券基金各占百分之五十的投资组合如何平衡风险和收益.投资组合的预期收益率和方差也可根据以上方法算出,先算出投资组合在三种经济状态下的预期收益率,如下:
萧条:50%*(-7%)+50%*17%=5%
正常:50%*(12%)+50%*7%=9.5%
繁荣:50%*(28%)+50%*(-3%)=12.5%
则该投资组合的预期收益率为:1/3*5%+1/3*9.5%+1/3*12.5%=9%
该投资组合的方差为:1/3[(5%-9%)^2+(9.5%-9%)^2+(12.5%-9%)^2]=0.001%
该投资组合的标准差为:3.08%
注意到,其中由于分散投资带来的风险的降低.一个权重平均的组合(股票和债券各占百分之五十)的风险比单独的股票或债券的风险都要低.
投资组合的风险主要是由资产之间的相互关系的协方差决定的,这是投资组合能够降低风险的主要原因.相关系数决定了两种资产的关系.相关性越低,越有可能降低风险

Ⅲ 假定一个投资组合中有两只股票A和B,其预期收益率分别为10%和15%,标准差分别为13%和25%

254231977

Ⅳ 金融经济学 资产组合问题

1) 0.2*(200/800)+0.1*(600/800)=12.5%

2) 相关系数=1/2=Cov(A,B)/(0.15*0.1)
Cov(A,B)=0.75% Beta(A)=(0.15*0.15)/0.75%=3

3) 不大确定,全部投资于B??

供参考

Ⅳ 最小方差投资组合是什么意思

最小方差组合是一系列投资组合中风险最小的投资组合,适合风险厌恶型投资者。由于风险和收益的对等关系,该种投资方式的收益也是最低的。

1、组合方差=A投资比例的平方*A的方差+B投资比例的平方*B的方差+2*A投资比例*B投资比例*A标准差*B标准差*A和B的相关系数=x^2*0.3^2+(1-x)^2*0.25^2+2x(1-x)*0.3*0.25*(-1)x就是A的投资。

求最小方差,对x求一阶导数,令其等于0,解出x=5/11(不会求导用抛物线原理也可以)把x代回计算方差的式子,得到最小方差=0。

2、一样的道理,区别在于完全不相关的A和B,相关系数=0。

(5)对一个两只股票的最小方差资产组合扩展阅读:

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。

Ⅵ 如何用excel计算最小方差投资组合

用EXCEL求方差 插入---函数---统计-----VAR或VARP 弹出对话框,输入样本数据区域,就直接能得出计算结果。VAR分母N减了1,估算样本方差。 VARP分母N,计算样本总体的方差 由于样本受到限制,一般n不大,一般用估算样本方差

Ⅶ 对一个两只股票的资产组合,它们之间的相关系数是多少为最好

投资A、B股票,计算A、B股票之间的相关系数和A与组合的相关系数、B与组合的相关系数,这两个相关系数是一回事吗?

Ⅷ 股票的组合收益率,组合方差怎么求

分散投资降低了风险(风险至少不会增加)。

1、组合预期收益率=0.5*0.1+0.5*0.3=0.2。

2、两只股票收益的协方差=-0.8*0.3*0.2=-0.048。

3、组合收益的方差=(0.5*0.2)^2+(0.5*0.3)^2+2*(-0.8)*0.5*0.5*0.3*0.2=0.0085。

4、组合收益的标准差=0.092。

组合前后发生的变化:组合收益介于二者之间;风险明显下降。

(8)对一个两只股票的最小方差资产组合扩展阅读:

基本特征:

最早的对中国收益率的研究应该是Jamison&Gaag在1987年发表的文章。初期的研究样本数量及所覆盖的区域都很有限,往往仅是某个城市或县的样本。而且在这些模型中,往往假设样本是同质的,模型比较简单。

在后来的研究中,样本量覆盖范围不断扩大直至全国性的样本,模型中也加入了更多的控制变量,并且考虑了样本的异质性,如按样本的不同属性分别计算了其收益率,并进行比较。

这些属性除去性别外,还包括了不同时间、地区、城镇样本工作单位属性、就业属性、时间、年龄等。下面概况了研究的主要结果。

Ⅸ 怎么样的投资组合标准差最小

标准差也就是风险。他不仅取决于证券组合内各证券的风险,还取决于各个证券之间的关系。
投资组合的标准差计算公式为 σP=W1σ1+W2σ2
各种股票之间不可能完全正相关,也不可能完全负相关,所以不同股票的投资组合可以减低风险,但又不能完全消除风险。一般而言,股票的种类越多,风险越小。

关于三种证券组合标准差的简易算法:

根据代数公式:(a+b+c)的平方=(a的平方+b的平方+c的平方+2ab+2ac+2bc)

第一步

1,将A证券的权重×标准差,设为A,
2,将B证券的权重×标准差,设为B,
3,将C证券的权重×标准差,设为C,

第二步

将A、B证券相关系数设为X
将A、C证券相关系数设为Y
将B、C证券相关系数设为Z

展开上述代数公式,将x、y、z代入,即可得三种证券的组合标准差=(A的平方+B的平方 +C的平方+2XAB+2YAC+2ZBC)的1/2次方。