当前位置:首页 » 融资杠杆 » 股利固定增长时的股票价值

股利固定增长时的股票价值

发布时间: 2021-08-07 19:08:24

❶ 股利固定增长的股票估价模型

可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。

第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。

第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。

❷ 根据普通股估价的固定增长模型,公司发放的现金股利越多,其股票价格越高。这句正确吗为什么谢谢

如果公司始终能保证固定增长率,且公司资本成本不变,那么,这句话是正确的。
但是,从理性的角度来说,公司发放的现金股利过高,企业将难以维系固定的增长比率及资本成本,甚至可能造成资金链断裂而破产。
从正面来说,企业发放的现金股利越多,说明企业的资金流充裕,资本及盈利能力雄厚,资金周转状况良好,向社会提供了一个正面的信息,将推动股价上扬。如果这种增长能固定持续,且不改变公司资本成本,那么,我们通过P=D(1+g)/(k-g),可以看出,D越高,股价P也越高。
如果公司发放过多的现金股利,将造成资金流不足。此时,企业的经营活动产生的现金流无法满足需要,就需要通过筹资活动来获取现金。如果通过债务筹资,在资产负债率达到一定百分比以后,企业就会面临无法按期偿还债务本息的可能;如果通过权益性筹资,则意味着企业今后将发放更多的股息,负担更加重,且无法享受税收优惠。这样,势必最后改变资本结构,增大资本成本,减小股利增长率,从而对股价造成影响。

❸ 写出固定股利增长的股票股价模型,并指出该模型说明股票的价值取决于哪些因素

楼主没有明确题目的原因,首先你是投资者想找股票投资组合呢,还是考试中出现这类题目?
总之呢,这是一个很费脑力人力智力的一个题目,如果考试的话,你就多研究一下,选出一个投资组合,然后分析它们的价值在哪里,考试中重要的不是你的股票会不会涨,而是你的思路;
如果是做投资的话,估计没人能回答得了,就算人家说了,你敢买吗?

❹ 固定增长股票的价值与投资的必要报酬率成反比

我个人理解,如果B改成反方向变化就对了。因为必要报酬率在分母上,变大的话价值肯定变小,但是不成比例变化,只是反方向变化

❺ 根据普通股估价的固定增长模型,公司发放的现金股利越多,其股票价格越高。这句正确吗为什么还有一题

固定不变:这是一个假设。它不代表每个企业的真实情况。但是我们可以通过分析公司现金流量折现价值模型主要包括股权自由现金流估价模型和公司自由现金流估价

❻ 固定增长股票内在价值

【答案】AB
【解析】固定成长股票内在价值=D0×(1+g)/(Rs-g),由公式看出,股利增长率g,最近一次发放的股利D0,与股票内在价值呈同方向变化;股权资本成本Rs与股票内在价值呈反向变化,而β系数与股权资本成本呈同向变化,因此β系数同股票内在价值亦成反方向变化。

❼ 股票估价中的股利固定增长模型数学推导问题

可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。

❽ 债券价值、股票价值的计算原理及其固定成长股票收益率的计算方法

(一)股票价值计算
1.股利固定模型(零成长股票的模型)
假如长期持有股票,且各年股利固定,其支付过程即为一个永续年金,则该股票价值的计算公式为:
P=
D为各年收到的固定股息,K为股东要求的必要报酬率
2.股利固定增长模型
从理论上看,企业的股利不应当是固定不变的,而应当是不断增长的。假定企业长期持有股票,且各年股利按照固定比例增长,则股票价值计算公式为:

D0为评价时已经发放的股利,D1是未来第一期的股利,K为投资者所要求的必要报酬率。

❾ 固定增长股票价值公式中的 d0(1+g)/Rs-g 怎么换算出来的 主要是Rs-g不明白!

是依据股票投资的收益率不断提高的思路,Rs=D1/Po+g股票收益率=股利收益率+资本利得Po=d0(1+g)/Rs-g。

股票是虚拟资本的一种形式,它本身没有价值。从本质上讲,股票仅是一个拥有某一种所有权的凭证。

股票之所以能够有价,是因为股票的持有人,即股东,不但可以参加股东大会,对股份公司的经营决策施加影响,还享有参与分红与派息的权利,获得相应的经济利益。同理,凭借某一单位数量的股票,其持有人所能获得的经济收益越大,股票的价格相应的也就越高。

(9)股利固定增长时的股票价值扩展阅读

固定成长股票的价值

如果企业股利不断稳定增长,并假设每年股利增长均为g,目前的股利为D0,则第t年的股利为:

Dt=D0(1 +g)

固定成长股票的价值的计算公式为:

当g固定时,上述公式可简化为:

如要计算股票投资的预期报酬率,则只要求出上述公式中Rs即可:

Rs= (D1 /P0) +g

例如,某企业股票目前的股利为4元,预计年增长率为3%,投资者期望的最低报酬率为8%,则该股票的内在价值为:

=82.4(元)

若按82.4元买进,则下年度预计的投资报酬率为:

Rs= (D1 /P0) +g

=4×(1+3%)÷82.4+3%

=8%