A. 有一家企业发放股利以固定增长率2%来进行,已知去年每股利2元,股票现行市价15元,求该企业的股票权益成本
K=D/P+G=2/15+2%=15.3%
B. 写出固定股利增长的股票股价模型,并指出该模型说明股票的价值取决于哪些因素
楼主没有明确题目的原因,首先你是投资者想找股票投资组合呢,还是考试中出现这类题目?
总之呢,这是一个很费脑力人力智力的一个题目,如果考试的话,你就多研究一下,选出一个投资组合,然后分析它们的价值在哪里,考试中重要的不是你的股票会不会涨,而是你的思路;
如果是做投资的话,估计没人能回答得了,就算人家说了,你敢买吗?
C. 股利固定增长的普通股资本成本率公式是什么
其计算公式为:
K=D/P+G
K--权益资本成本
D--预期年股利率
P--普通股市价
G--普通股年股利增长率。在单独测算各种类型资本成本(主要是权益资本成本)方面,从财务管理学的角度看,确定权益资本成本率也称为权益资本成本,包括普通股成本和留存收益成本。留存收益成本又可称为内部权益成本,普通股成本又可称为外部权益成本。
(3)求股利固定增长的股票市价扩展阅读:
债券资金成本率=(债券面值×票面利率)×(1-所得税率)/债券的发行价格×(回1-债券筹资费率)
普通股股票资金成本率有好几种计算公式:
常用的是:无风险利率+贝塔系数×(市场报酬率-无风险利率)
如果股利固定不变,则:普通股股票资金成本率=每年固定的股利/普通股发行价格×(1-普通股筹资费率)
如果股利增长率固定不变,则普通股股票资金成本率=预期第一年的股利/普通股发行价格×(1-普通股筹资费率)+股利固定增长率
D. 股票估价中的股利固定增长模型数学推导问题
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。
E. 固定成长的股票
首先要知道有这一个结论:
假设如果股利以一个固定的比率增长,那么我们就已经把预测无限期未来股利的问题,转化为单一增长率的问题。如果D0是刚刚派发的股利,g是稳定增长率,那么股价可以写成:
P0=D0(1+g)/(R-g)=D1/(R-g)
P0为现在的股票理论价格,D0为近一期的股利,D1为下一次或将要发生的第一期股利,R为企业的期望回报,g为股利稳定增长率。
故此根据这个结论可得:
M公司理论价值=0.15*(1+6%)/(8%-6%)=7.95元
N公司理论价值=0.6*(1+0%)/(8%-0%)=7.5元 注:由于N公司采取固定股利政策,即其股利增长率为0%。
很明显M公司的现在股价明显高于其理论价值,而N公司的股价低于其理论价值,故此甲企业作出投资N公司的投资决策。
F. 股利固定成长模型的股票价值问题
题目出问题了……
G. 某股票当前市场价格是25元,上年每股股利是1.2元,预期的股利增长率是5%.求预期收益率为
实际上这道题考察的是固定股利增长模型中这个公式的使用:P0=D0(1+g)/(R-g)
从题意可得已知,P0=25,D0=1.2,g=5%,求R
故此把数据代入公式,可得25=1.2*(1+5%)/(R-5%)
解得R=10.04%
H. 债券价值、股票价值的计算原理及其固定成长股票收益率的计算方法
(一)股票价值计算
1.股利固定模型(零成长股票的模型)
假如长期持有股票,且各年股利固定,其支付过程即为一个永续年金,则该股票价值的计算公式为:
P=
D为各年收到的固定股息,K为股东要求的必要报酬率
2.股利固定增长模型
从理论上看,企业的股利不应当是固定不变的,而应当是不断增长的。假定企业长期持有股票,且各年股利按照固定比例增长,则股票价值计算公式为:
D0为评价时已经发放的股利,D1是未来第一期的股利,K为投资者所要求的必要报酬率。
I. 股利固定增长的股票估价模型
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。