当前位置:首页 » 融资杠杆 » 股利增长模型的基本假设是股票价值

股利增长模型的基本假设是股票价值

发布时间: 2021-08-01 08:42:56

⑴ 计算股票价值的公式

内在价值V=股利/(R-G)其中股利是当前股息;R为资本成本=8%,当然还有些书籍显示,R为合理的贴现率;G是股利增长率。本年价值为:2.5/(10%-5%),下一年为2.5*(1+10%)/(10%-5%)=55。大部分的收益都以股利形式支付给股东,股东在从股价上获得很大收益的情况下使用。根据本人理解应该属于高配息率的大笨象公司,而不是成长型公司。因为成长型公司要求公司不断成长,所以多数不配发股息或者极度少的股息,而是把钱再投入公司进行再投资,而不是以股息发送。
本条内容来源于:中国法律出版社《中华人民共和国金融法典:应用版》

⑵ 变速股利增长模型计算股票价值

首先按照CAPM模型计算股票投资者的期望报酬率:
r=rf+beta*(rm-rf)=7%+1.23*(13%-7%)=14.38%
然后计算第一阶段每年的股利
D2007=D2006*(1+12%)=1.12*1.12=1.2544
D2008=D2007*(1+12%)=1.4049
D2009=D2008*(1+12%)=1.5735
D2010=D2009*(1+12%)=1.7623
第三步,计算四年后的股价,根据Gordon模型,
P2010=D2011/(r-g)=D2010*(1+17%)/(r-17%)
最后将第一阶段每年的股利贴现,将四年后的股价贴现并求和就是目前的价值。

⑶ 股票价值评估的模型有哪些分别适用于哪些情况,在实际操作中需要注意什么问题

股票价值评估分以下几种模型:

1.DDM模型(Dividend discount model /股利折现模型)
2.DCF /Discount Cash Flow /折现现金流模型)
(1)FCFE ( Free cash flow for the equity equity /股权自由现金流模型)模型
(2)FCFF模型( Free cash flow for the firm firm /公司自由现金流模型)
DDM模型
V代表普通股的内在价值, Dt为普通股第t期支付的股息或红利,r为贴现率
对股息增长率的不同假定,股息贴现模型可以分为
:零增长模型、不变增长模型(高顿增长模型)、二阶段股利增长模型(H模型)、三阶段股利增长模型和多元增长模型等形式。
最为基础的模型;红利折现是内在价值最严格的定义; DCF法大量借鉴了DDM的一些逻辑和计算方法(基于同样的假设/相同的限制)。
1. DDM DDM模型模型法(Dividend discount model / Dividend discount model / 股利折现模型股利折现模型)
DDM模型
2. DDM DDM模型的适用分红多且稳定的公司,非周期性行业;
3. DDM DDM模型的不适用分红很少或者不稳定公司,周期性行业;
DDM模型在大陆基本不适用;
大陆股市的行业结构及上市公司资金饥渴决定,分红比例不高,分红的比例与数量不具有稳定性,难以对股利增长率做出预测。
DCF 模型
2.DCF /Discount Cash Flow /折现现金流模型) DCF估值法为最严谨的对企业和股票估值的方法,原则上该模型适用于任何类型的公司。
自由现金流替代股利,更科学、不易受人为影响。
当全部股权自由现金流用于股息支付时, FCFE模型与DDM模型并无区别;但总体而言,股息不等同于股权自由现金流,时高时低,原因有四:
稳定性要求(不确定未来是否有能力支付高股息);
未来投资的需要(预计未来资本支出/融资的不便与昂贵);
税收因素(累进制的个人所得税较高时);
信号特征(股息上升/前景看好;股息下降/前景看淡)
DCF模型的优缺点
优点:比其他常用的建议评价模型涵盖更完整的评价模型,框架最严谨但相对较复杂的评价模型。需要的信息量更多,角度更全面, 考虑公司发展的长期性。较为详细,预测时间较长,而且考虑较多的变数,如获利成长、资金成本等,能够提供适当思考的模型。
缺点:需要耗费较长的时间,须对公司的营运情形与产业特性有深入的了解。考量公司的未来获利、成长与风险的完整评价模型,但是其数据估算具有高度的主观性与不确定性。复杂的模型,可能因数据估算不易而无法采用,即使勉强进行估算,错误的数据套入完美的模型中,也无法得到正确的结果。小变化在输入上可能导致大变化在公司的价值上。该模型的准确性受输入值的影响很大(可作敏感性分析补救)。

⑷ 股利固定增长的股票估价模型

可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。

第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。

第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。

⑸ 写出固定股利增长的股票股价模型,并指出该模型说明股票的价值取决于哪些因素

楼主没有明确题目的原因,首先你是投资者想找股票投资组合呢,还是考试中出现这类题目?
总之呢,这是一个很费脑力人力智力的一个题目,如果考试的话,你就多研究一下,选出一个投资组合,然后分析它们的价值在哪里,考试中重要的不是你的股票会不会涨,而是你的思路;
如果是做投资的话,估计没人能回答得了,就算人家说了,你敢买吗?

⑹ 二阶段股利增长模型估计出来的价值是不是应该和市场股票价格差别不大

模型预估的增长不准确,建议只能参考不能全信

⑺ 股票估价中的股利固定增长模型数学推导问题

可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。

⑻ 如何理解股利贴现模型以及其计算公式

股利贴现模型,简称DDM,是一种最基本的股票内在价值评价模型,股票内在价值可以用股票每年股利收入的现值之和来评价;股利是发行股票的股份公司给予股东的回报,按股东的持股比例进行利润分配,每一股股票所分得的利润就是每股股票的股利。

股利贴现模型为定量分析虚拟资本、资产和公司价值奠定了理论基础,也为证券投资的基本分析提供了强有力的理论根据。

股利贴现模型计算公式分为三种。零增长模型即股利增长率为0,计算公式V=D0/k,V为公司价值,D0为当期股利,K为投资者要求的投资回报率,或资本成本;不变增长模型,即股利按照固定的增长率g增长,计算公式为V=D1/(k-g);二段增长模型、三段增长模型、及多段增长模型。

(8)股利增长模型的基本假设是股票价值扩展阅读:

股利是股东投资股票获得的唯一现金流,因此现金股利是决定股票价值的主要因素,而盈利等其他因素对股票价值的影响,只能通过股利间接地表现出来。现金股利贴现模型适合于分红多且稳定的公司,一般为非周期性行业。

由于该模型使用的是预期现金股利的贴现价值,因此对于分红很少或者股利不稳定的公司、周期性行业均不适用。股利贴现模型在实际应用中存在的问题有许多公司不支付现金股利,股利贴现模型的应用受到限制;股利支付受公司股利政策的人为因素影响较大;相对于公司收益长期明显滞后。

⑼ 股票价值计算公式详细计算方法

计算公式为:

股票价值

(9)股利增长模型的基本假设是股票价值扩展阅读:

确定股票内在价值一般有三种方法:

一、盈率法,市盈率法是股票市场中确定股票内在价值的最普通、最普遍的方法,通常情况下,股市中平均市盈率是由一年期的银行存款利率所确定的。

二、方法资产评估值法,就是把上市公司的全部资产进行评估一遍,扣除公司的全部负债,然后除以总股本,得出的每股股票价值。如果该股的市场价格小于这个价值,该股票价值被低估,如果该股的市场价格大于这个价值,该股票的价格被高估。

三、销售收入法,就是用上市公司的年销售收入除以上市公司的股票总市值,如果大于1,该股票价值被低估,如果小于1,该股票的价格被高估。

⑽ 请问什么是股票价值分析中的股利贴现模型

就是将来各期你可以得到的股利,化为现在的钱数。
例如你将来可以得到110元股利,年利率是10%
则现值是100元
这样计算就可以比较不同时间的真实价值了。