A. log 在數學中的運算公式
1、如果a>0,且a≠1,M>0,N>0.那麼:
(1)loga(M·N)=logaM+logaN;
(2)logaNM=logaM-logaN;
(3)logaMn=nlogaM(n∈R).
(4)(n∈R).
2、換底公式
logab=logcalogcb(a>0,且a≠1;c>0,且c≠1;b>0)
(1)log公式運演算法則擴展閱讀
對數函數的運算性質的難點:
一、底數不統一
對數的運算性質是建立在底數相同的基礎上的,但實際問題中,卻經常要遇到底數不相同的情況,碰到這種情形,主要有三種處理的方法:
1、化為指數式
對數函數與指數函數互為反函數,它們之間有著密切的關系:logaN=bab=N,因此在處理有關對數問題時,經常將對數式化為指數式來幫助解決。
2、利用換底公式統一底數
換底公式可以將底數不同的對數通過換底把底數統一起來,然後再利用同底對數相關的性質求解。
3、利用函數圖象
函數圖象可以將函數的有關性質直觀地顯現出來,當對數的底數不相同時,可以藉助對數函數的圖象直觀性來理解和尋求解題的思路。
B. log函數加減運算
當a>0且a≠1時,m>0,n>0,那麼:
log(a)(mn)=log(a)(m)+log(a)(n)
log(a)(m/n)=log(a)(m)-log(a)(n)
log(a)(m^n)=nlog(a)(m) (n∈r)
換底公式:log(a)m=log(b)m/log(b)a (b>0且b≠1)
a^(log(b)n)=n^(log(b)a)
在比較兩個函數值時:
如果底數一樣,真數越大,函數值越大。(a>1時)
如果底數一樣,真數越大,函數值越小。(0<a<1時)
(2)log公式運演算法則擴展閱讀:
對數函數的一般形式為y=㏒ax,它實際上就是指數函數的反函數(圖象關於直線y=x對稱的兩函數互為反函數),可表示為x=ay。
因此指數函數里對於a的規定(a>0且a≠1),因此對於不同大小a所表示的函數圖形:關於X軸對稱、當a>1時,a越大,圖像越靠近x軸、當0<a<1時,a越小,圖像越靠近x軸。
對數函數的圖形只不過是指數函數的圖形的關於直線y=x的對稱圖形,因為它們互為反函數。
C. 關於log的公式
當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a) 證明: 設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)對數恆等式:a^log(a)N=N; log(a)a^b=b
(8)由冪的對數的運算性質可得(推導公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根號下的a 為底)(以 n次根號下的M 為真數)=log(a)M , log(以 n次根號下的a 為底)(以 m次根號下的M 為真數)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
D. log的 運演算法則
解答:
log怎樣運算?
這個都需要藉助工具:電腦或者數學用表。
但是,電腦和數學用表都只能求出常用對數lgn
和自然對數lnn
需要利用換底公式轉化
比如log底數3真數10=log底數10真數10/log底數10真數3=1/lg3≈1/0.4771≈2.0959
E. 對數公式的運演算法則
運演算法則公式如下:
1.lnx+ lny=lnxy
2.lnx-lny=ln(x/y)
3.lnxⁿ=nlnx
4.ln(ⁿ√x)=lnx/n
5.lne=1
6.ln1=0
拓展內容:
對數運演算法則(rule of logarithmic operations)一種特殊的運算方法.指積、商、冪、方根的對數的運演算法則。
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。 這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。 在簡單的情況下,乘數中的對數計數因子。
更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。
由指數和對數的互相轉化關系可得出:
1.兩個正數的積的對數,等於同一底數的這兩個數的對數的和,即
F. log的 運演算法則 乘除
一、四則運演算法則:
loga(AB)=loga A+loga B
loga(A/B)=loga A-loga B
logaN^x=xloga N
二、換底公式
logM N=loga M/loga N
三、換底公式導出:
logM N=-logN M
四、對數恆等式
a^(loga M)=M
G. log的相乘怎麼算
log的乘法一般都用換底公式來解決:
log(a)b=log(s)b/log(s)a(括弧里的是底數)。
例如:log(2)3*log(3)4=log(2)3*log(2)4/log(2)3=log(2)4=2。
log(a)b=log(s)b/log(s)a(括弧里的是底數)的推導過程:
設log(s)b=M,log(s)a =N,log(a)b=R
則s^M=b,s^N=a,a^R=b
即(s^N)^R=a^R=b
s^(NR)=b
所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
(7)log公式運演算法則擴展閱讀:
對數的加減乘除運算規則:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N)
4、log(a)(M÷N)=log(a)(M)-log(a)(N)
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
H. log函數運算公式是什麼
如果a>0,且a≠1,M>0,N>0,那麼:
1、loga(MN)=logaM+logaN;
2、loga(M/N)=logaM-logaN;
3、對logaM中M的n次方有=nlogaM;
如果a=e^m,則m為數a的自然對數,即lna=m,e=2.718281828…為自然對數的底。
(8)log公式運演算法則擴展閱讀:
基本性質
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N)
4、log(a)(M÷N)=log(a)(M)-log(a)(N)
5、log(a)(M^n)=nlog(a)(M)
I. 求log函數運算公式大全
logₐ(MN)=logₐM+logₐN
logₐ(M/N)=logₐM-logₐN
logₐ(1/N)=-logₐN
logₐ(ₐᵏ)=k
logₐMⁿ=nlogₐM
(9)log公式運演算法則擴展閱讀:
如果a的x次方等於N(a>0,且a≠1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。
在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。
J. log怎麼計算
如果a的x次方等於N(a>0,且a不等於1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
計算方式:
根據2^3=8,可得log2 8=3。
(10)log公式運演算法則擴展閱讀:
推導公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
求導數
(xlogax)'=logax+1/lna
其中,logax中的a為底數,x為真數;
(logax)'=1/xlna
特殊的即a=e時有
(logex)'=(lnx)'=1/x[4]