㈠ 怎樣用 Python 寫一個股票自動交易的程序
國外有自動交易軟體。只需要寫插件就可以。如果用python重新寫,有些麻煩。如果證券交易公司提供API,就容易。 我記得2004年左右是通過API實現的。 有個朋友做過一個貴金屬的自動交易。不過2年後,虧了不少。
㈡ 怎麼用python panda 算股票市場收益率
1.收集數據,開盤價,收盤價,交易量
2.用pandas處理數據,處理缺失值
3.用股票收益率的公式帶入
說白了,pandas只是個好用的工具,方法都是一樣的,只是效率問題
有多少人工,就有多少智能
㈢ 怎樣用 Python 寫一個股票自動買賣的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
㈣ 已知股票數據,如何用Python繪制k線日對應數據
我沒遇到過 只是自己寫過
有點經驗
先確定時間片
然後再把tick插入就行了
㈤ 使用python做量化交易策略測試和回驗,有哪些比較成熟一些的庫
numpy
介紹:一個用python實現的科學計算包。包括:1、一個強大的N維數組對象Array;2、比較成熟的(廣播)函數庫;3、用於整合C/C++和Fortran代碼的工具包;4、實用的線性代數、傅里葉變換和隨機數生成函數。numpy和稀疏矩陣運算包scipy配合使用更加方便。
scipy
介紹:SciPy是一款方便、易於使用、專為科學和工程設計的Python工具包。它包括統計、優化、線性代數、傅里葉變換、信號和圖像處理、常微分方程求解等等。
pandas
介紹:Python Data Analysis Library 或 pandas 是基於NumPy 的一種工具,該工具是為了解決數據分析任務而創建的。Pandas 納入了大量庫和一些標準的數據模型,提供了高效地操作大型數據集所需的工具。pandas提供了大量能使我們快速便捷地處理數據的函數和方法。你很快就會發現,它是使Python成為強大而高效的數據分析環境的重要因素之一。
quantdsl
介紹: quantdsl包是Quant DSL語法在Python中的一個實現。Quant DSL 是財務定量分析領域專用語言,也是對衍生工具進行建模的功能編程語言。Quant DSL封裝了金融和交易中使用的模型(比如市場動態模型、最小二乘法、蒙特卡羅方法、貨幣的時間價值)。
statistics
介紹:python內建的統計庫,該庫提供用於計算數值數據的數學統計的功能。
PyQL
介紹: PyQL構建在Cython之上,並在QuantLib之上創建一個很淺的Pythonic層,是對QuantLib的一個包裝,並利用Cython更好的性能。
㈥ 如何使用Python api 函數寫股票策略
利用context.now可以獲得當前策略運行的時間,返回的是datetime.datetime格式。datetime.datetime格式可以很方便的進行日期、時間操作。
比如timedelta可以很方便的在日期上做日、小時、分鍾、秒的運算。例如,需要策略運行時間1天前的時間,可以這樣寫:context.now+datetime.timedelta(days=-1),返回的便是一天前的時間。
㈦ 如何利用Python預測股票價格
預測股票價格沒有意義。
單支股票價格,多股組合,大盤這些都可以使用神經網路來學習,02年就做過了,漲跌預測平均能達到54%到57%的准確率,但是只能定性,無法定量,因此,在扣除印花稅之後無利可圖。
純粹使用股票交易數據來預測並保證總體獲利不是程序能辦到的,人也辦不到。
目前世界上最先進的炒股機器也只能利用網路時差那微不可計的零點幾秒在歐洲與美國證券間倒來倒去,那套系統研發費用數千萬,硬體(主要是獨立光纜)費用以億計。
㈧ 怎麼用python計算股票
作為一個python新手,在學習中遇到很多問題,要善於運用各種方法。今天,在學習中,碰到了如何通過收盤價計算股票的漲跌幅。
第一種:
讀取數據並建立函數:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置
t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)
plt.show()
f(t)
第二種:
利用pandas裡面的方法:
import pandas as pd
a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets
第三種:
close=a['close']
rets=close/close.shift(1)-1
print rets
總結:python是一種非常好的編程語言,一般而言,我們可以運用構建相關函數來實現自己的思想,但是,眾所周知,python中裡面的有很多科學計算包,裡面有很多方法可以快速解決計算的需要,如上面提到的pandas中的pct_change()。因此在平時的使用中應當學會尋找更好的方法,提高運算速度。
㈨ 如何用python計算某支股票持有90天的收益率
defget(self,get,money):
print「ATM:」
print「yourmoneyis+「,self.get,」%aday
self.today=self.money*(self.get/100)+self.money
print「nowyouhave」,self.today
self.tomorrow=self.today*(self.get/100)+self.today
print「tomorrowyouwellhave」,self.tomorrow
get(50,10000)
這個代碼會給你1天後和2天後的余額,如果要顯示九十天,還請您自己打完
㈩ 怎樣用 Python 寫一個股票自動交易的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧