1. 如何利用Python預測股票價格
預測股票價格沒有意義。
單支股票價格,多股組合,大盤這些都可以使用神經網路來學習,02年就做過了,漲跌預測平均能達到54%到57%的准確率,但是只能定性,無法定量,因此,在扣除印花稅之後無利可圖。
純粹使用股票交易數據來預測並保證總體獲利不是程序能辦到的,人也辦不到。
目前世界上最先進的炒股機器也只能利用網路時差那微不可計的零點幾秒在歐洲與美國證券間倒來倒去,那套系統研發費用數千萬,硬體(主要是獨立光纜)費用以億計。
2. 如何使用Python api 函數寫股票策略
利用context.now可以獲得當前策略運行的時間,返回的是datetime.datetime格式。datetime.datetime格式可以很方便的進行日期、時間操作。
比如timedelta可以很方便的在日期上做日、小時、分鍾、秒的運算。例如,需要策略運行時間1天前的時間,可以這樣寫:context.now+datetime.timedelta(days=-1),返回的便是一天前的時間。
3. 如何用python計算某支股票持有90天的收益率
defget(self,get,money):
print「ATM:」
print「yourmoneyis+「,self.get,」%aday
self.today=self.money*(self.get/100)+self.money
print「nowyouhave」,self.today
self.tomorrow=self.today*(self.get/100)+self.today
print「tomorrowyouwellhave」,self.tomorrow
get(50,10000)
這個代碼會給你1天後和2天後的余額,如果要顯示九十天,還請您自己打完
4. 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
個人覺得這問題問的不太對,說句不好的話,你是來搞編程的還是做股票的。
當然,如果題主只是用來搜集資料,看數據的話那還是可以操作一波的,至於python要怎麼入門,個人下面會推薦一些入門級的書籍,通過這些書籍,相信樓主今後會有一個清晰的了解(我們以一個完全不會編程的的新手來看待)。
《Learn Python The Hard Way》,也就是我們所說的笨辦法學python,這絕對是新手入門的第一選擇,裡面話題簡練,是一本以練習為導向的教材。有淺入深,而且易懂。
其它的像什麼,《Python源碼剖析》,《集體智慧編程》,《Python核心編程(第二版)》等題主都可以適當的選擇參讀下,相信都會對題主有所幫助。
最後,還是要重復上面的話題,炒股不是工程學科,它有太多的變數,對於現在的智能編程來說,它還沒有辦法及時的反映那些變數,所以,只能當做一種參考,千萬不可過渡依賴。
結語:pyhton相對來說是一種比較高端的學科,需要有很強的邏輯能力。所以入門是非常困難的,如果真的要學習,是需要很大的毅力去堅持下去的,而且不短時間就能入門了,要有所心理准備。
5. python獲取一隻股票的行情,為什麼出現這么多問題
首先,你要確定下你的庫文件是否安裝正常,測試方法,就是在交互模式下測試。
其次,不要用別名,在試試。
希望能幫到你。。。。
6. 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎
概率炒股法:
用python獲取股票價格,如tushare,如果發現股票當天漲幅在大盤之上(2點30到2點50判斷),買入持有一天,下跌當天就別買,你可以用概率論方法,根據資金同時持有5支,10支或20支,這樣不怕停盤影響,理論上可以跑贏大盤。
還有一種是操作etf,如大盤50 etf,300 etf,中小板etf,創業板etf,當天2.30分判斷那個etf上漲就買入那支,不上漲什麼都不買,持有一天,第二天如是。
7. 怎樣用 Python 寫一個股票自動交易的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
8. 如何用python實現Markowitz投資組合優化
m投資組合模型的一個很有力的替代是Index model,或者我們說的single factor model,因為markowitz是需要計算全部股票的協方差和方差的,如果證券的數量很多,計算量會非常大(這些在investment的參考書裡面有),我下面就把原話打給你 first,the model requires a huge number of estimates to fill the covariance matrix.second ,the model does not provide any guideline to the forecasting to the security risk premiums that are essential to construct the efficient frontier of risky assets.第一個是硬傷,單單計算NYSE的股票就要4.5百萬的估計量,而同等條件下index model才需要9002個估計量,這就是為什麼markowitz模型很多人不願意用的願意,而優點也很直接,如果你的估算值是准確的,那麼m模型的結果比其他都准確
9. Python和金融分析的關系量化交易內容深度
Python是一種腳本語言,就是程序員用的代碼語言。
Python的功能不可以說不大,在金融數據分析裡面有著很方便的應用。
但是需要你專門去學Python,不然看到一堆代碼只會懵逼。
10. 選股策略回測用 Matlab 好還是用 Python 好
都是工具,也都可以開發選股策略的回測,推薦Python.理由:Python免費且開源Python編程語言簡潔優美Python有眾多的量化包,包括獲取數據、處理數據、回測、風險分析。目前國外、國內很多平台和項目都是使用PythonPython開發策略,簡潔高效,這里舉幾個例子:1.[量化學堂-策略開發]金叉死叉策略2.[量化學堂-策略開發]海龜策略3.[量化學堂-策略開發]淺談小市值策略4.[量化學堂-策略開發]多頭排列回踩買入策略5.[量化學堂-策略開發]藉助talib使用技術分析指標來炒股6.[量化學堂-策略開發]大師系列之價值投資法7.[量化學堂-策略開發]事件驅動策略(基於業績快報)8.[量化學堂-策略開發]基於協整的配對交易9.[量化學堂-策略開發]使用cvxopt包實現馬科維茨投資組合優化:以一個股票策略為例這些策略涵蓋了股票量化主要的策略類型,但是使用Python語言,每個策略代碼都不多。