當前位置:首頁 » 融資杠桿 » 固定股利增長的股票股價模型

固定股利增長的股票股價模型

發布時間: 2021-04-20 07:56:45

Ⅰ 股票估價中的股利固定增長模型數學推導問題

可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。
第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。
第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。

Ⅱ 寫出固定股利增長的股票股價模型,並指出該模型說明股票的價值取決於哪些因素

樓主沒有明確題目的原因,首先你是投資者想找股票投資組合呢,還是考試中出現這類題目?
總之呢,這是一個很費腦力人力智力的一個題目,如果考試的話,你就多研究一下,選出一個投資組合,然後分析它們的價值在哪裡,考試中重要的不是你的股票會不會漲,而是你的思路;
如果是做投資的話,估計沒人能回答得了,就算人家說了,你敢買嗎?

Ⅲ 股票投資估價如何理解:固定股利增長模型(戈登模型)中所說的,一般投資報酬率大於股利增長率

股票投資估價是要按照公司的業績進行估算的。

Ⅳ 股利折現模型和股利增長模型有啥區別

第一
股利折現模型:
普通股成本=第一年預期股利/普通股金額×(1-普通股籌資費率)×100%+股利固定增長率
第二
股利增長模型:
假設如果股利以一個固定的比率增長,那麼我們就已經把預測無限期未來股利的問題,轉化為單一增長率的問題。如果D0是剛剛派發的股利,g是穩定增長率,那麼股價可以寫成:
P0=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……
=D0(1+g)/(1+R) + D0(1+ g)^2/(1+R)^2 + D0(1+ g)^3/(1+R)^3……

Ⅳ 股利固定成長模型的股票價值問題

題目出問題了……

Ⅵ 零成長股票和固定股利增長率模型,股票資金成本如何計數

零成長股票,和固定股利的股票,不是一個概念吧,不要搞混了

Ⅶ 固定股利增長模型

P=D1/RS=D0*(1+G)/RS-G=0.6*(1+4%)/7%-4%=20.8
股票價值=20.8

Ⅷ 固定成長股票估值模型計算公式推倒導

數學本質是對一個等比數列求極限和的過程。

該等比數列的公比q,等於(1+g)/(1+k),其中g為股利的固定增長率,k為折現率。

等比數列的求和公式很簡單,即數列的和S,等於a1*(1-q^n)/(1-q),把q的表達式代入該求和公式中,再把n趨於無求大,就得到結果:股價理論值P=D1/(k-g),其中D1為第一期股利即D0(1+g)。

(8)固定股利增長的股票股價模型擴展閱讀:

數學思維拓展訓練特點:

1、 全面開發孩子的左右腦潛能,提升孩子的學習能力、解決問題能力和創造力;幫助幼兒學會思考、主動探討、自主學習,

2、 通過思維訓練的數學活動和策略游戲, 對思維的廣度、深度和創造性方面進行綜合訓練。

3、 根據兒童身心發展的特點,提高幼兒的數學推理、空間推理和邏輯推理,促進幼兒多元智能的發展,為塑造幼兒的未來打下良好的基礎。

4、利用神奇快速的心算訓練和思維啟蒙訓練,提高與智商最為相關的五大領域的基礎能力。

5、為解決幼小銜接的難題而准備。

Ⅸ 股利固定增長的股票估價模型

可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。

第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。

第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。

Ⅹ 穩定增長股票價格模型

股票增長模型主要包括:
一、零增長模型
零增長模型是股息貼現模型的一種特殊形式,它假定股息是固定不變的。換言之,股息的增長率等於零。零增長模型不僅可以用於普通股的價值分析,而且適用於統一公債和優先股的價值分析。
零增長模型實際上也是不變增長模型的一個特例。特別是,假定增長率合等於零,股利將永遠按固定數量支付,這時,不變增長模型就是零增長模型。這兩種模型來看,雖然不變增長的假設比零增長的假設有較小的應用限制,但在許多情況下仍然被認為是不現實的。但是,不變增長模型卻是多元增長模型的基礎,因此這種模型極為重要。
二、不變增長模型
不變增長模型亦稱戈登股利增長模型又稱為「股利貼息不變增長模型」、「戈登模型(Gordon Model)」,在大多數理財學和投資學方面的教材中,戈登模型是一個被廣泛接受和運用的股票估價模型,該模型通過計算公司預期未來支付給股東的股利現值,來確定股票的內在價值,它相當於未來股利的永續流入。戈登股利增長模型是股息貼現模型的第二種特殊形式,分兩種情況:一是不變的增長率;另一個是不變的增長值。
三、多元增長模型
多元增長模型是假定在某一時點T之後股息增長率為一常數g,但是在這之前股息增長率是可變的。
多元增長模型是被最普遍用來確定普通股票內在價值的貼現現金流模型。這一模型假設股利的變動在一段時間T內並沒有特定的模式可以預測,在此段時間以後,股利按不變增長模型進行變動。因此,股利流可以分為兩個部分:第一部分包括在股利無規則變化時期的所有預期股利的現值;第二部分包括從時點T來看的股利不變增長率時期的所有預期股利的現值。