當前位置:首頁 » 融資杠桿 » 股利固定增長股票估價

股利固定增長股票估價

發布時間: 2021-08-16 21:46:52

Ⅰ 股票估價中的股利固定增長模型數學推導問題

可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。
第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。
第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。

Ⅱ 根據普通股估價的固定增長模型,公司發放的現金股利越多,其股票價格越高。這句正確嗎為什麼謝謝

如果公司始終能保證固定增長率,且公司資本成本不變,那麼,這句話是正確的。
但是,從理性的角度來說,公司發放的現金股利過高,企業將難以維系固定的增長比率及資本成本,甚至可能造成資金鏈斷裂而破產。
從正面來說,企業發放的現金股利越多,說明企業的資金流充裕,資本及盈利能力雄厚,資金周轉狀況良好,向社會提供了一個正面的信息,將推動股價上揚。如果這種增長能固定持續,且不改變公司資本成本,那麼,我們通過P=D(1+g)/(k-g),可以看出,D越高,股價P也越高。
如果公司發放過多的現金股利,將造成資金流不足。此時,企業的經營活動產生的現金流無法滿足需要,就需要通過籌資活動來獲取現金。如果通過債務籌資,在資產負債率達到一定百分比以後,企業就會面臨無法按期償還債務本息的可能;如果通過權益性籌資,則意味著企業今後將發放更多的股息,負擔更加重,且無法享受稅收優惠。這樣,勢必最後改變資本結構,增大資本成本,減小股利增長率,從而對股價造成影響。

Ⅲ 固定成長股票估值模型計算公式推倒導

數學本質是對一個等比數列求極限和的過程。

該等比數列的公比q,等於(1+g)/(1+k),其中g為股利的固定增長率,k為折現率。

等比數列的求和公式很簡單,即數列的和S,等於a1*(1-q^n)/(1-q),把q的表達式代入該求和公式中,再把n趨於無求大,就得到結果:股價理論值P=D1/(k-g),其中D1為第一期股利即D0(1+g)。

(3)股利固定增長股票估價擴展閱讀:

數學思維拓展訓練特點:

1、 全面開發孩子的左右腦潛能,提升孩子的學習能力、解決問題能力和創造力;幫助幼兒學會思考、主動探討、自主學習,

2、 通過思維訓練的數學活動和策略游戲, 對思維的廣度、深度和創造性方面進行綜合訓練。

3、 根據兒童身心發展的特點,提高幼兒的數學推理、空間推理和邏輯推理,促進幼兒多元智能的發展,為塑造幼兒的未來打下良好的基礎。

4、利用神奇快速的心算訓練和思維啟蒙訓練,提高與智商最為相關的五大領域的基礎能力。

5、為解決幼小銜接的難題而准備。

Ⅳ 債券價值、股票價值的計算原理及其固定成長股票收益率的計算方法

(一)股票價值計算
1.股利固定模型(零成長股票的模型)
假如長期持有股票,且各年股利固定,其支付過程即為一個永續年金,則該股票價值的計算公式為:
P=
D為各年收到的固定股息,K為股東要求的必要報酬率
2.股利固定增長模型
從理論上看,企業的股利不應當是固定不變的,而應當是不斷增長的。假定企業長期持有股票,且各年股利按照固定比例增長,則股票價值計算公式為:

D0為評價時已經發放的股利,D1是未來第一期的股利,K為投資者所要求的必要報酬率。

Ⅳ 根據普通股估價的固定增長模型,公司發放的現金股利越多,其股票價格越高。這句正確嗎為什麼還有一題

固定不變:這是一個假設。它不代表每個企業的真實情況。但是我們可以通過分析公司現金流量折現價值模型主要包括股權自由現金流估價模型和公司自由現金流估價

Ⅵ 股票估價的問題。一支股票分成兩段,前部分不增長,後部分固定增長,怎麼計算

股票估值沒有任何人會估計的很准,關鍵是把復雜問題簡單化,而且寧可低估不要高估,你直接用5元除以8%,得出的股價基本不會高,是62.5元。

Ⅶ 股利固定增長的股票估價模型

可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。

第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。

第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。

Ⅷ 根據普通股估價的固定增長模型,公司發放的現金股利越多,其股票價格越高。這句正確嗎為什麼

理論上正確

Ⅸ 寫出固定股利增長的股票股價模型,並指出該模型說明股票的價值取決於哪些因素

樓主沒有明確題目的原因,首先你是投資者想找股票投資組合呢,還是考試中出現這類題目?
總之呢,這是一個很費腦力人力智力的一個題目,如果考試的話,你就多研究一下,選出一個投資組合,然後分析它們的價值在哪裡,考試中重要的不是你的股票會不會漲,而是你的思路;
如果是做投資的話,估計沒人能回答得了,就算人家說了,你敢買嗎?

Ⅹ 股票投資估價如何理解:固定股利增長模型(戈登模型)中所說的,一般投資報酬率大於股利增長率

股票投資估價是要按照公司的業績進行估算的。