A. 股票估價的股票估價的模型
股票估價的基本模型
計算公式為:
股票價值
估價
R——投資者要求的必要收益率
Dt——第t期的預計股利
n——預計股票的持有期數
零增長股票的估價模型
零成長股是指發行公司每年支付的每股股利額相等,也就是假設每年每股股利增長率為零。每股股利額表現為永續年金形式。零成長股估價模型為:
股票價值=D/Rs
例:某公司股票預計每年每股股利為1.8元,市場利率為10%,則該公司股票內在價值為:
股票價值=1.8/10%=18元
若購入價格為16元,因此在不考慮風險的前提下,投資該股票是可行的
二、不變增長模型
(1)一般形式。如果我們假設股利永遠按不變的增長率增長,那 么就會建立不變增長模型。 [例]假如去年某公司支付每股股利為 1.80 元,預計在未來日子 里該公司股票的股利按每年 5%的速率增長。因此,預期下一年股利 為 1.80×(1 十 0.05)=1.89 元。假定必要收益率是 11%,該公司的 股票等於 1. 80×[(1 十 0. 05)/(0.11—0. 05)]=1. 89/(0. 11—0. 05) =31.50 元。而當今每股股票價格是 40 元,因此,股票被高估 8.50 元,建議當前持有該股票的投資者出售該股票。
(2)與零增長模型的關系。零增長模型實際上是不變增長模型的 一個特例。特別是,假定增長率合等於零,股利將永遠按固定數量支 付,這時,不變增長模型就是零增長模型。 從這兩種模型來看, 雖然不變增長的假設比零增長的假設有較小 的應用限制,但在許多情況下仍然被認為是不現實的。但是,不變增 長模型卻是多元增長模型的基礎,因此這種模型極為重要。
三、多元增長模型 多元增長模型是最普遍被用來確定普通股票內在價值的貼現現 金流模型。這一模型假設股利的變動在一段時間內並沒有特定的 模式可以預測,在此段時間以後,股利按不變增長模型進行變動。因 此,股利流可以分為兩個部分。 第一部分 包括在股利無規則變化時期的所有預期股利的現值 第二部分 包括從時點 T 來看的股利不變增長率變動時期的所有預期股利的現 值。因此,該種股票在時間點的價值(VT)可通過不變增長模型的方程 求出
[例]假定 A 公司上年支付的每股股利為 0.75 元,下一年預期支 付的每股票利為 2 元,因而再下一年預期支付的每股股利為 3 元,即 從 T=2 時, 預期在未來無限時期, 股利按每年 10%的速度增長, 即 0:,Dz(1 十 0.10)=3×1.1=3.3 元。假定該公司的必要收益 率為 15%,可按下面式子分別計算 V7—和認 t。該價格與目前每股 股票價格 55 元相比較,似乎股票的定價相當公平,即該股票沒有被 錯誤定價。
(2)內部收益率。零增長模型和不變增長模型都有一個簡單的關 於內部收益率的公式,而對於多元增長模型而言,不可能得到如此簡 捷的表達式。雖然我們不能得到一個簡捷的內部收益率的表達式,但 是仍可以運用試錯方法,計算出多元增長模型的內部收益率。即在建 立方程之後,代入一個假定的伊後,如果方程右邊的值大於 P,說明 假定的 P 太大;相反,如果代入一個選定的盡值,方程右邊的值小於 認說明選定的 P 太小。繼續試選盡,最終能程式等式成立的盡。 按照這種試錯方法,我們可以得出 A 公司股票的內部收益率是 14.9%。把給定的必要收益 15%和該近似的內部收益率 14.9%相 比較,可知,該公司股票的定價相當公平。
(3)兩元模型和三元模型。有時投資者會使用二元模型和三元模 型。二元模型假定在時間了以前存在一個公的不變增長速度,在時間 7、以後,假定有另一個不變增長速度城。三元模型假定在工時間前, 不變增長速度為身 I,在 71 和 72 時間之間,不變增長速度為期,在 72 時間以後,不變增長速度為期。設 VTl 表示 在最後一個增長速度開始後的所有股利的現值,認-表示這以前 所有股利的現值,可知這些模型實際上是多元增長模型的特例。
四、市盈率估價方法 市盈率,又稱價格收益比率,它是每股價格與每股收益之間的比 率,其計算公式為反之,每股價格=市盈率×每股收益 如果我們能分別估計出股票的市盈率和每股收益, 那麼我們就能 間接地由此公式估計出股票價格。這種評價股票價格的方法,就是 「市盈率估價方法」
五、貼現現金流模型 貼現現金流模型是運用收入的資本化定價方法來決定普通股票 的內在價值的。按照收入的資本化定價方法,任何資產的內在價值是 由擁有這種資產的投資 者在未來時期中所接受的現金流決定的。 由於現金流是未來時期的預 期值,因此必須按照一定的貼現率返還成現值,也就是說,一種資產 的內在價值等於預期現金流的貼現值。對於股票來說,這種預期的現 金流即在未來時期預期支付的股利,因此,貼現現金流模型的公式為 式中:Dt 為在時間 T 內與某一特定普通股相聯系的預期的現金 流,即在未來時期以現金形式表示的每股股票的股利;K 為在一定風 險程度下現金流的合適的貼現率; V 為股票的內在價值。 在這個方程里,假定在所有時期內,貼現率都是一樣的。由該方 程我們可以引出凈現值這個概念。凈現值等於內在價值與成本之差, 即 式中:P 為在 t=0 時購買股票的成本。 如果 NPV>0,意味著所有預期的現金流入的凈現值之和大於投 資成本,即這種股票被低估價格,因此購買這種股票可行; 如果 NPV<0,意味著所有預期的現金流入的凈現值之和小於投 資成本,即這種股票被高估價格,因此不可購買這種股票。 在了解了凈現值之後,我們便可引出內部收益率這個概念。內部 收益率就是使投資凈現值等於零的貼現率。如果用 K*代表內部收益 率,通過方程可得 由方程可以解出內部收益率 K*。把 K*與具有同等風險水平的股 票的必要收益率(用 K 表示)相比較:如果 K*>K,則可以購買這種股 票;如果 K*<K,則不要購買這種股票。 一股普通股票的內在價值時存在著一個麻煩問題, 即投資者必須 預測所有未來時期支付的股利。 由於普通股票沒有一個固守的生命周 期,因此建議使用無限時期的股利流,這就需要加上一些假定。 這些假定始終圍繞著勝利增長率,一般來說,在時點 T,每股股 利被看成是在時刻 T—1 時的每股股利乘上勝利增長率 GT,其計 例如,如果預期在 T=3 時每股股利是 4 美元,在 T=4 時每股股利 是 4.2 美元,那麼不同類型的貼現現金流模型反映了不同的股利增 長率的假定
B. 股票估價的問題。一支股票分成兩段,前部分不增長,後部分固定增長,怎麼計算
股票估值沒有任何人會估計的很准,關鍵是把復雜問題簡單化,而且寧可低估不要高估,你直接用5元除以8%,得出的股價基本不會高,是62.5元。
C. 固定成長股票估值模型計算公式推倒導
數學本質是對一個等比數列求極限和的過程。
該等比數列的公比q,等於(1+g)/(1+k),其中g為股利的固定增長率,k為折現率。
等比數列的求和公式很簡單,即數列的和S,等於a1*(1-q^n)/(1-q),把q的表達式代入該求和公式中,再把n趨於無求大,就得到結果:股價理論值P=D1/(k-g),其中D1為第一期股利即D0(1+g)。
(3)股利固定增長型股票的估價擴展閱讀:
數學思維拓展訓練特點:
1、 全面開發孩子的左右腦潛能,提升孩子的學習能力、解決問題能力和創造力;幫助幼兒學會思考、主動探討、自主學習,
2、 通過思維訓練的數學活動和策略游戲, 對思維的廣度、深度和創造性方面進行綜合訓練。
3、 根據兒童身心發展的特點,提高幼兒的數學推理、空間推理和邏輯推理,促進幼兒多元智能的發展,為塑造幼兒的未來打下良好的基礎。
4、利用神奇快速的心算訓練和思維啟蒙訓練,提高與智商最為相關的五大領域的基礎能力。
5、為解決幼小銜接的難題而准備。
D. 固定增長的普通股股票估價公式簡化過程
R>g(g固定)條件下,對等比數列求和。
E. 股票估價中的股利固定增長模型數學推導問題
可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。
第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。
第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。
F. 根據普通股估價的固定增長模型,公司發放的現金股利越多,其股票價格越高。這句正確嗎為什麼還有一題
固定不變:這是一個假設。它不代表每個企業的真實情況。但是我們可以通過分析公司現金流量折現價值模型主要包括股權自由現金流估價模型和公司自由現金流估價
G. 股票投資估價如何理解:固定股利增長模型(戈登模型)中所說的,一般投資報酬率大於股利增長率
股票投資估價是要按照公司的業績進行估算的。
H. 股利固定增長的股票估價模型
可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。
第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。
第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。
I. 根據普通股估價的固定增長模型,公司發放的現金股利越多,其股票價格越高。這句正確嗎為什麼謝謝
如果公司始終能保證固定增長率,且公司資本成本不變,那麼,這句話是正確的。
但是,從理性的角度來說,公司發放的現金股利過高,企業將難以維系固定的增長比率及資本成本,甚至可能造成資金鏈斷裂而破產。
從正面來說,企業發放的現金股利越多,說明企業的資金流充裕,資本及盈利能力雄厚,資金周轉狀況良好,向社會提供了一個正面的信息,將推動股價上揚。如果這種增長能固定持續,且不改變公司資本成本,那麼,我們通過P=D(1+g)/(k-g),可以看出,D越高,股價P也越高。
如果公司發放過多的現金股利,將造成資金流不足。此時,企業的經營活動產生的現金流無法滿足需要,就需要通過籌資活動來獲取現金。如果通過債務籌資,在資產負債率達到一定百分比以後,企業就會面臨無法按期償還債務本息的可能;如果通過權益性籌資,則意味著企業今後將發放更多的股息,負擔更加重,且無法享受稅收優惠。這樣,勢必最後改變資本結構,增大資本成本,減小股利增長率,從而對股價造成影響。
J. 寫出固定股利增長的股票股價模型,並指出該模型說明股票的價值取決於哪些因素
樓主沒有明確題目的原因,首先你是投資者想找股票投資組合呢,還是考試中出現這類題目?
總之呢,這是一個很費腦力人力智力的一個題目,如果考試的話,你就多研究一下,選出一個投資組合,然後分析它們的價值在哪裡,考試中重要的不是你的股票會不會漲,而是你的思路;
如果是做投資的話,估計沒人能回答得了,就算人家說了,你敢買嗎?