當前位置:首頁 » 融資杠桿 » 股票股利增長模型公式

股票股利增長模型公式

發布時間: 2021-07-23 13:27:54

『壹』 變速股利增長模型計算股票價值

首先按照CAPM模型計算股票投資者的期望報酬率:
r=rf+beta*(rm-rf)=7%+1.23*(13%-7%)=14.38%
然後計算第一階段每年的股利
D2007=D2006*(1+12%)=1.12*1.12=1.2544
D2008=D2007*(1+12%)=1.4049
D2009=D2008*(1+12%)=1.5735
D2010=D2009*(1+12%)=1.7623
第三步,計算四年後的股價,根據Gordon模型,
P2010=D2011/(r-g)=D2010*(1+17%)/(r-17%)
最後將第一階段每年的股利貼現,將四年後的股價貼現並求和就是目前的價值。

『貳』 如何理解股利貼現模型以及其計算公式

股利貼現模型,簡稱DDM,是一種最基本的股票內在價值評價模型,股票內在價值可以用股票每年股利收入的現值之和來評價;股利是發行股票的股份公司給予股東的回報,按股東的持股比例進行利潤分配,每一股股票所分得的利潤就是每股股票的股利。

股利貼現模型為定量分析虛擬資本、資產和公司價值奠定了理論基礎,也為證券投資的基本分析提供了強有力的理論根據。

股利貼現模型計算公式分為三種。零增長模型即股利增長率為0,計算公式V=D0/k,V為公司價值,D0為當期股利,K為投資者要求的投資回報率,或資本成本;不變增長模型,即股利按照固定的增長率g增長,計算公式為V=D1/(k-g);二段增長模型、三段增長模型、及多段增長模型。

(2)股票股利增長模型公式擴展閱讀:

股利是股東投資股票獲得的唯一現金流,因此現金股利是決定股票價值的主要因素,而盈利等其他因素對股票價值的影響,只能通過股利間接地表現出來。現金股利貼現模型適合於分紅多且穩定的公司,一般為非周期性行業。

由於該模型使用的是預期現金股利的貼現價值,因此對於分紅很少或者股利不穩定的公司、周期性行業均不適用。股利貼現模型在實際應用中存在的問題有許多公司不支付現金股利,股利貼現模型的應用受到限制;股利支付受公司股利政策的人為因素影響較大;相對於公司收益長期明顯滯後。

『叄』 股利增長率的計算

股利增長率就是本年度股利較上一年度股利增長的比率。
從理論上分析,股利增長率在短期內有可能高於資本成本,但從長期來看,如果股利增長率高於資本成本,必然出現支付清算性股利的情況,從而導致資本的減少。
股利增長率的計算公式
股利增長率與企業價值(股票價值)有很密切的關系。gordon模型認為,股票價值等於下一年的預期股利除以要求的股票收益率和預期股利增長率的差額所得的商,即:
股票價值=dps(r-g)(其中dps表示下一年的預期股利,r表示要求的股票收益率,g表示股利增長率)。
從該模型的表達式可以看出,股利增長率越高,企業股票的價值越高。
股利增長率=本年每股股利增長額/上年每股股利×100%

『肆』 年股利增長率怎麼算

股利增長率就是本年度股利較上一年度股利增長的比率。
從理論上分析,股利增長率在短期內有可能高於資本成本,但從長期來看,如果股利增長率高於資本成本,必然出現支付清算性股利的情況,從而導致資本的減少。
股利增長率的計算公式
股利增長率與企業價值(股票價值)有很密切的關系。Gordon模型認為,股票價值等於下一年的預期股利除以要求的股票收益率和預期股利增長率的差額所得的商,即:

股票價值=DPS(r-g)(其中DPS表示下一年的預期股利,r表示要求的股票收益率,g表示股利增長率)。

從該模型的表達式可以看出,股利增長率越高,企業股票的價值越高。

股利增長率=本年每股股利增長額/上年每股股利×100%

『伍』 股票估價中的股利固定增長模型數學推導問題

可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。
第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。
第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。

『陸』 如何用股息增長模型計算股票價格

全部手打——

拜託,上面的回答都太不專業了!!

所謂的過去一年內股息下降的股票,用你能理解的最簡單的說法,就是一個上市公司今年的分紅比去年少了。這就是股息下降的股票。隨便舉個例子:一個股票,去年的分紅是10送10,今年是10送8,這個就是股息下降。下降的原因么,這就是你論文分析的內容了么(給你個建議,選個派現的股票分析會比較簡單——例——去年每10股派現5元,今年每10股派現2元)。。。至於模型么,你自己搞定。你的問題就在於不知道什麼事股息下降的股票。
下面的鏈接裡面,我給你了網路中的股息含義的鏈接。仔細看看吧。上文中的「派現」么,派發現金的意思,明白了吧。

給力吧? ~哈~ 記得給分哦。

『柒』 股利貼現模型的公式

股利貼現模型是研究股票內在價值的重要模型,其基本公式為: 其中V為每股股票的內在價值,Dt是第t年每股股票股利的期望值,k是股票的期望收益率或貼現率(discount rate)。公式表明,股票的內在價值是其逐年期望股利的現值之和。
根據一些特別的股利發放方式,DDM模型還有以下幾種簡化了的公式: 即股利增長率為0,未來各期股利按固定數額發放。計算公式為:
V=D0/k
其中V為公司價值,D0為當期股利,K為投資者要求的投資回報率,或資本成本。 即股利按照固定的增長率g增長。計算公式為:
V=D1/(k-g)
注意此處的D1=D0(1+g)為下一期的股利,而非當期股利。 二段增長模型假設在時間l內紅利按照g1增長率增長,l外按照g2增長。
三段增長模型也是類似,不過多假設一個時間點l2,增加一個增長率g3

『捌』 股利增長率的計算公式

股利增長率的計算公式:
股利增長率與企業價值(股票價值)有很密切的關系。Gordon模型認為,股票價值等於下一年的預期股利除以要求的股票收益率和預期股利增長率的差額所得的商,即:
股票價值=DPS /(r-g)(其中DPS表示下一年的預期股利,r表示要求的股票收益率,g表示股利增長率)。
從該模型的表達式可以看出,股利增長率越高,企業股票的價值越高。
股利增長率=本年每股股利增長額/上年每股股利×100%

『玖』 股票價值計算公式詳細計算方法

內在價值V=股利/(R-G)其中股利是當前股息;R為資本成本=8%,當然還有些書籍顯示,R為合理的貼現率;G是股利增長率。
本年價值為: 2.5/(10%-5%) 下一年為 2.5*(1+10%)/(10%-5%)=55。
大部分的收益都以股利形式支付給股東,股東無從股價上獲得很大收益的情況下使用。根據本人理解應該屬於高配息率的大笨象公司,而不是成長型公司。因為成長型公司要求公司不斷成長,所以多數不配發股息或者極度少的股息,而是把錢再投入公司進行再投資,而不是以股息發送。
您可登錄會計學堂官網,免費領取10G會計學習資料;關注會計學堂,學習更多會計知識。

『拾』 股利固定增長模型中有一個公式:P=D0*(1+g)/(K-g)=D1/(K-g) 如何來決定哪種情況下是使用D0,情況下是使用D1.

如果題中給出本年支付的股利數字,然後告訴你增長率,那麼就要用D0,如果直接給出下一年的股利,就用D1。

模型假定未來股利的永續流入,投資者的必要收益率,折現公司預期未來支付給股東的股利,來確定股票的內在價值(理論價格)。

分兩種情況:一是不變的增長率;另一個是不變的增長值。具有三個假定條件:股息的支付在時間上是永久性的;股息的增長速度是一個常數;模型中的貼現率大於股息增長率。



(10)股票股利增長模型公式擴展閱讀:

由於股票市場的投資風險一般大於貨幣市場,投資於股票市場的資金勢必要求得到一定的風險報酬,使股票市場收益率高於貨幣市場,形成一種收益與風險相對應的較為穩定的比價結構。

零增長模型實際上是不變增長模型的一個特例。假定增長率g等於0,股利將永遠按固定數量支付,這時,不變增長模型就是零增長模型。